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Starting from ImageNet Model:
Fine-Tuning and Adversarial Attack

Liangliang Cao 

https://columbia6894.github.io/
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Administrative

By this week you should:
1. form final project team (3 ppl per team)
2. decide the topic of  your final projects

Then you can
• finish 1st problem in your homework 3
• receive google cloud credits (by contacting TA)
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Administrative	(Continued)

Have problems with your final project? Try the following
1. Choose a recent paper that you are interested in
2. Implement it or test it by yourself
3. Then you can 

a) If  it fails in some scenario, try to improve it
b) If  it works great, apply it to a new application

For more details, refer to 
http://llcao.net/cu-deeplearning17/lecture/lecture5_llc.pdf



•4

Outline

Last vision lecture discussed learning from ImageNet/Celeb 1M

You can impress others with a model pretrained from ImageNet:
• Fine-tuning
• Adversarial attack



Fine	Tuning	Models	from	ImageNet
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Models trained from ImageNet have learned effective feature 
presentation.

We can treat deep CNNs as feature extractors, and fine tune a new 
model over it. 

Several ways to do the fine tuning:
1. Train Linear SVM over deep features  (least training examples)
2. Fine tuning only the cross-entropy     (more training examples)
3. Fine tuning both classifier and deep CNNs ( about thousands of  

examples)



1.	Fine-tuning	using	linear	SVM
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Recommend Liblinear for linear SVM: 
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

Steps:
1. Take the last layer of  ImageNet model as feature extractor
2. Extract the feature for all the training examples
3. Optimize liblinear model and fine the global minimization



2.	Fine-tuning	the	top	layers
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Steps:
1. Freeze the convolutional layers of  pre-trained model

model = applications.VGG16(weights='imagenet', include_top=False) 
for layer in model.layers[:25]: 

layer.trainable = False 

2. Add a top model for the new classification task

3.    Train the top model using SGD optimization

One easy-to-follow reference: https://towardsdatascience.com/a-
comprehensive-guide-on-how-to-fine-tune-deep-neural-networks-using-keras-on-
google-colab-free-daaaa0aced8f



Differences
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Tricks of  improve fine-tuning:
1. For SGD, use slow training rate first, do not use RMSProp
2. Data augmentation may be very helpful
3. Regularization may help fine-tuning (though we do not do 

regularization in general deep learning.)

SVM New Top layer

Extra toolkit Liblinear Keras/Tensorflow

Optimization Global minimum SGD may fall to local 
minimum

Number of  training A few images to dozens Dozens to hundreds



3.	One	Step	Further

9

When there are more training samples, we shall consider fine-tune the 
convolutional filters as well:
• Use smaller learning rates for CNN filters but bigger rates for the 

top layer.
• Monitor the training loss whether training accuracy = 100%
• Reference: 

http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr
_style.html

Future research questions you may consider for final projects: 
• Actively choose samples to label? (with a budget)
• Efficiently learn new categories, e.g., for face recognition



Adversarial	Attack
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How many of  you think deep CNNs are very reliable?

Guess what an ImageNet model will predict:



Adversarial	Attack
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How many of  you think deep CNNs are very reliable?

Guess what an ImageNet model will predict:



Adversarial	Attack
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Examples are courtesy to Stanford cs231n lecture slides.



How	to	Compute	the	Adversarial	Example
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Maximize 

Subject to 

So the adversarial example can be generated by

The Fast Gradient 
Sign Method 



How	to	Implement?
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There are a number of  toolboxes such as cleverhans, Foolbox, etc

from cleverhans.attacks import FastGradientMethod
fgsm = FastGradientMethod(model, sess=sess) 
fgsm_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.} 
adv_x = fgsm.generate_np(orgin_x, **fgsm_params) 

But fundamentally it is just to compute the gradient subject to input x. 
You should read the code of  cleverhans or Foolbox by yourself. 



From	White-box	Attack	to	Black-box	Attack
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Fast Gradient Sign Method (fgsm) requires to know the model 
parameters to compute the adversarial attack. It is called a white-box 
attack coz we know the details of  the model.

In practice attacker does not know the model.  They can
• evaluate the model multiple times to approximate the gradient
• attack some venerable tasks such as object detection or QA

For final projects you may refer to:
• NIPS 2017 adversarial attack competition
• Percy Liang and Dawn Song’s work on adversarial attack systems
• The Elephant in the Room attack for object detection


