
1

Reinforcement Learning and NLP

Kapil Thadani
kapil@cs.columbia.edu

RESEARCH

2

Outline

◦ Model-free RL
· Markov decision processes (MDPs)
· Derivative-free optimization
· Policy gradients
· Variance reduction
· Value functions
· Actor-critic methods

◦ Policy gradients in NLP
· Non-differentiable metrics
· Latent structure

3

Reinforcement learning

“ Instead of trying to produce a programme to simulate the adult mind,
why not rather try to produce one which simulates the child’s? If this
were then subjected to an appropriate course of education one would
obtain the adult brain .”

— Alan Turing
Computing Machinery and Intelligence (1950)

4

Reinforcement learning

Sequential decision making
· Learn to model behavior over time
· Rewards may be stochastic and delayed
· Trade off exploration vs exploitation

Generalization of supervised learning
· No full access to function to optimize
· Stateful environment, input affected by previous actions
· Nonstationarity for samples (no i.i.d. assumption)

5

Reinforcement learning

Agent Environment

5

Reinforcement learning

Agent Environment

actions

observations

5

Reinforcement learning

Agent Environment

actions

observations

states rewards

6

Reinforcement learning

Model-free
· Policy-based: learn how to take actions in each state
· Value-based: learn the value of actions in each state

Model-based
· Model environment to predict next states and rewards

7

Markov Decision Process (MDP)
Discrete-time stochastic control process defined by 〈S,A,P,R, γ〉

S: set of states

A: set of actions

P: transition probability distribution

Pass′ = p(st+1 = s′|st = s, at = a)

R: reward function

Rass′ = E [rt|st = s, at = a]

γ ∈ [0, 1): discount factor

7

Markov Decision Process (MDP)
Discrete-time stochastic control process defined by 〈S,A,P,R, γ〉

S: set of states

A: set of actions

P: transition probability distribution

Pass′ = p(st+1 = s′|st = s, at = a)

R: reward function

Rass′ = E [rt|st = s, at = a]

γ ∈ [0, 1): discount factor

s s′

s′′

7

Markov Decision Process (MDP)
Discrete-time stochastic control process defined by 〈S,A,P,R, γ〉

S: set of states

A: set of actions

P: transition probability distribution

Pass′ = p(st+1 = s′|st = s, at = a)

R: reward function

Rass′ = E [rt|st = s, at = a]

γ ∈ [0, 1): discount factor

s s′

s′′

7

Markov Decision Process (MDP)
Discrete-time stochastic control process defined by 〈S,A,P,R, γ〉

S: set of states

A: set of actions

P: transition probability distribution

Pass′ = p(st+1 = s′|st = s, at = a)

R: reward function

Rass′ = E [rt|st = s, at = a]

γ ∈ [0, 1): discount factor

s s′

s′′

7

Markov Decision Process (MDP)
Discrete-time stochastic control process defined by 〈S,A,P,R, γ〉

S: set of states

A: set of actions

P: transition probability distribution

Pass′ = p(st+1 = s′|st = s, at = a)

R: reward function

Rass′ = E [rt|st = s, at = a]

γ ∈ [0, 1): discount factor

s s′

s′′

7

Markov Decision Process (MDP)
Discrete-time stochastic control process defined by 〈S,A,P,R, γ〉

S: set of states

A: set of actions

P: transition probability distribution

Pass′ = p(st+1 = s′|st = s, at = a)

R: reward function

Rass′ = E [rt|st = s, at = a]

γ ∈ [0, 1): discount factor

s s′

s′′

8

Markov Decision Process (MDP)

Goal: Take actions to maximize expected return over trajectories

Trajectory τ : path through state space up to a horizon

τ = 〈s0, a0, r0, s1, a1, r1, s2, a2, . . . 〉

Episodic setting: agent acts until a terminal state is reached

Return Rt: cumulative future discounted rewards from st

Rt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑
k=0

γkrt+k

Assuming infinite horizon:
· if γ ≥ 1, Rt is unbounded
· if 0 ≤ γ < 1, Rt is well-defined and converges

9

Markov Decision Process (MDP)

Goal: Learn policy to maximize expected return over trajectories

Policy π(s, a) represents action probabilities p(a|s) in state s
· Deterministic policy: at = π(st)
· Stochastic policy: at ∼ π(a|st) ← borrowing conditional prob notation

Learn parameterized policy πθ with neural network weights θ

Network architecture follows action space A:
· Discrete A: softmax layer to represent p(a|st)
· Continuous A: output µ and diagonal σ to sample at ∼ N (µ, σ)

10

Derivative-free optimization

Objective: maximize Eτ∼θ [R(τ)]

· Treat policy as a black box with parameters θ ∈ Rd

· Iteratively update θ to make good returns more likely

11

Cross-entropy method Mannor et al (2003)
The Cross Entropy method for Fast Policy Search

· Initialize µ0 ∈ Rd, σ0 ∈ Rd

· At each iteration i, draw L samples for θl ∼ N (µi, σ
2
i)

· Evaluate each trajectory τ l using parameters θl

· Select the top ρ% of samples by R(τ l) as the elite set
· Fit a new diagonal Gaussian to the elite set to obtain µi+1, σi+1

· At convergence, return final µ

+ No gradients needed; only forward pass
+ Converges quickly
+ Remarkably effective on many problems, e.g., Tetris
− Needs lots of samples

12

Evolution strategies Salimans et al (2017)
Evolution Strategies as a Scalable Alternative to Reinforcement Learning

· Initialize θ0 ∈ Rd

· At each iteration i, sample Gaussian noise ε1, . . . , εL ∼ N (0, I)

· Perturb θi with each εl to get θ̃l = θi + σεl

· Evaluate each trajectory τ l using parameters θ̃l and update

θi+1 = θi +
η

σL

L∑
l=1

R(τ l) · εl

+ No gradients needed; only forward pass
+ Easy to parallelize with low communication overhead
+ Competitive on Atari, OpenAI benchmarks
− Requires 3-10x more data

13

Policy gradient

Learn to increase expected return by gradient ascent over θ

θi+1 = θi + η∇θ Eτ [R(τ)]

13

Policy gradient: reinforce Williams (1992)
Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

Learn to increase expected return by gradient ascent over θ

θi+1 = θi + η∇θ Eτ [R(τ)]

∇θ Eτ [R(τ)] =
∑
τ

R(τ) · ∇θ p(τ |θ)

=
∑
τ

R(τ) · ∇θ p(τ |θ) ·
p(τ |θ)
p(τ |θ)

=
∑
τ

R(τ) · ∇θ log p(τ |θ) · p(τ |θ)

= Eτ [R(τ) · ∇θ log p(τ |θ)]

computed using sample averages

≈ 1

L

L∑
l=1

R(τ l) · ∇θ log p(τ l|θ)

14

Policy gradient: reinforce Williams (1992)
Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

Learn to increase expected return by gradient ascent over θ

θi+1 = θi + η∇θ Eτ [R(τ)]
= θi + η Eτ [R(τ) · ∇θ log p(τ |θ)]

i.e., increase logprob of τ proportional to return R(τ)

+ Unbiased estimator of gradient
+ Valid even if R is discontinuous or unknown
+ Only need p(τ |θ) to be differentiable
− High variance, particularly for long trajectories
− Assigns credit to whole trajectory rather than individual actions
− Large number of samples needed

15

Variance reduction: baseline
If R(τ) ≥ 0 ∀τ
· Estimator always modifies density
· θi doesn’t stabilize with fixed η

Subtract a baseline from the reward

∇θ Eτ [R(τ)] = ∇θ Eτ [R(τ)− b]
= Eτ [(R(τ)− b) · ∇θ log p(τ |θ)]

+ Reduces variance
+ Estimator remains unbiased

Eτ b∇θ log p(τ |θ) = b∇θ
∑
τ

p(τ |θ) = b∇θ1 = 0

Using estimate of E [R(τ)] for b is a near-optimal choice
i.e., increase logprob of τ proportional to how much return R(τ) is
better than expected

16

Variance reduction

∇θ log p(τ |θ) = ∇θ log
T−1∏
t=0

πθ(at|st)Patstst+1
= ∇θ

T−1∑
t=0

log πθ(at|st)

+ No need to model environment Pstst+1 (hence model-free)
− Rewards are distributed over trajectory

∇θ Eτ [R(τ)] = Eτ

[(
T−1∑
t=0

rt

)
T−1∑
t=0

∇θ log πθ(at|st)

]

Instead, consider estimator for reward at timestep t

∇θ Eτ [rt] = E

[
rt

t∑
t′=0

∇θ log πθ(at′ |st′)

]

17

Variance reduction

Sum over timesteps for full return

∇θ Eτ [R(τ)] = Eτ

[
T−1∑
t=0

rt

t∑
t′=0

∇θ log πθ(at′ |st′)

]

= Eτ

[
T−1∑
t=0

∇θ log πθ(at|st)
T−1∑
t′=t

rt′

]

Can add baseline for each state

∇θ Eτ [R(τ)] = Eτ

[
T−1∑
t=0

∇θ log πθ(at|st)

(
T−1∑
t′=t

rt′ − b(st)

)]

i.e., increase logprob of action at proportional to how much future
return Rt(τ) =

∑T−1
t′=t rt′ is better than expected

+ Ignores prior rewards r0, . . . , rt−1 when evaluating action at at st
+ Estimator remains unbiased as long as b doesn’t depend on at

18

Value functions
State-value function V π(s):

Expected value of being in state s and following policy π

V π(s) = Eπ [Rt|st = s]

State-action-value function Qπ(s, a):
Expected value of taking action a from s and then following π

Qπ(s) = Eπ [Rt|st = s, at = a]

Advantage function Aπ(s, a):
Expected value of taking action a from s instead of following π

Aπ(s, a) = Qπ(s, a)− V π(s)

19

Value functions

∇θ Eτ [R(τ)] = Eτ

[
T−1∑
t=0

∇θ log πθ(at|st)
T−1∑
t′=t

rt′

]
+ baseline term

=

T−1∑
t=0

Es0...at

[
∇θ log πθ(at|st) Ert...sT

[
T−1∑
t′=t

rt′

]]
Qπ(st, at)

Substituting and reintroducing the baseline

∇θ Eτ [R(τ)] = Eτ

[
T−1∑
t=0

∇θ log πθ(at|st) (Qπ(st, at)− b(st))

]

Defining b(st) = V π(st) is near-optimal (Greenmith et al, 2004)

∇θ Eτ [R(τ)] = Eτ

[
T−1∑
t=0

∇θ log πθ(at|st)Aπ(st, at)

]

20

Value functions

∇θ Eτ [R(τ)] = Eτ

[
T−1∑
t=0

∇θ log πθ(at|st)Aπ(st, at)

]

Want Eτ [Aπ] = 0 to keep variance low
· i.e., positive advantage for good actions, negative for bad actions

Don’t know Aπ, can use an advantage estimator Â such as

Â(st) = rt + rt+1 + rt+2 + rt+3 + . . . − b(st)

+ Unbiased estimator
− High variance from single sample estimate
− Confounds the effect of actions at, at+1, at+2, . . .

21

Variance reduction

Use discounted return when calculating advantage

Â(st) = rt + γrt+1 + γ2rt+2 + γ3rt+3 + . . . − b(st)

γ < 1 discounts the effect of actions that are far in the future

To keep Eτ [Aπ] = 0, also use discounted return when fitting
baseline to V π(st)

+ Emphasizes near-term rewards when evaluating actions
+ Lowers variance
− Biased estimator

22

Variance reduction

Use V π to estimate future rewards

Â(st) = rt + γrt+1 + γ2rt+2 + γ3rt+3 + . . . − b(st)
= rt + γrt+1 + γ2rt+2 + γ3V π(st+3)− b(st)
= rt + γrt+1 + γ2V π(st+2)− b(st)
= rt + γV π(st+1)− b(st)

Use estimator of discounted V π for both future rewards and baseline

Â(st) = rt + γV̂t(st+1)− V̂t(st)

+ Explicit bias-variance tradeoff
i.e., fewer reward terms lower variance of estimator but increase bias

23

Actor-critic methods

Â(st) = rt + γV̂ (st+1)− V̂ (st)

Actor : policy πθ(at|st)
Critic : value function V̂ (st)

Simplified algorithm:
· Evaluate policy πθi to collect samples 〈st, Rt〉
· Fit V̂ by minimizing

∑
n ||V̂ (sn)−Rn||2

· Update policy parameters using V̂

θi+1 = θi + η Eτ

[
T−1∑
t=0

∇θ log πθ(at|st)
(
rt + γV̂ (st+1)− V̂ (st)

)]

24

Resources

· Reinforcement Learning: An Introduction (Sutton & Barto, 2017)

http://incompleteideas.net/book/bookdraft2017nov5.pdf

· OpenAI Spinning Up: code, environment, papers
https://spinningup.openai.com/

· Berkeley RL course materials
http://rail.eecs.berkeley.edu/deeprlcourse/

http://incompleteideas.net/book/bookdraft2017nov5.pdf
https://spinningup.openai.com/
http://rail.eecs.berkeley.edu/deeprlcourse/

25

Policy gradients in NLP

· Optimization over non-differentiable metrics
e.g., text generation metrics like BLEU, ROUGE, CIDEr etc
Learned scores, e.g., neural teachers

· End-to-end training of sub-models for latent structure
Sample from policy over latent variables
Back-propagate loss to policy network

26

Non-differentiable metrics Rennie et al (2016)
Self-critical Sequence Training for Image Captioning

· Optimize against CIDEr, BLEU, ROUGE, etc using reinforce

· Use score of greedy decoding of output words as a baseline
i.e., encourage exploration of new words that improve rewards

26

Non-differentiable metrics Rennie et al (2016)
Self-critical Sequence Training for Image Captioning

· Optimize against CIDEr, BLEU, ROUGE, etc using reinforce

· Use score of greedy decoding of output words as a baseline
i.e., encourage exploration of new words that improve rewards

27

Non-differentiable metrics Bosselut et al (2018)
Discourse-Aware Neural Rewards for Coherent Text Generation

· Train ‘teacher’ network to score how well-ordered a text is

· Incorporate teacher scores as a reward in SCST (Rennie et al, 2016)
to encourage generation of coherent text

28

Latent structure Andreas et al (2016)
Learning to Compose Neural Networks for Question Answering

· Dynamically assemble a network for each question from modules

· Sample module layout from policy and backpropagate loss for
answers to modules with reinforce

28

Latent structure Andreas et al (2016)
Learning to Compose Neural Networks for Question Answering

· Dynamically assemble a network for each question from modules

· Sample module layout from policy and backpropagate loss for
answers to modules with reinforce

29

Latent structure Lei et al (2016)
Rationalizing Neural Predictions

· Define network to propose sequences of words from input text as
rationales for aspect-based sentiment analysis

· Sample rationales during inference and convey squared error on task
to rationale generator with reinforce

29

Latent structure Lei et al (2016)
Rationalizing Neural Predictions

· Define network to propose sequences of words from input text as
rationales for aspect-based sentiment analysis

· Sample rationales during inference and convey squared error on task
to rationale generator with reinforce

