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Reinforcement learning

"“Instead of trying to produce a programme to simulate the adult mind,
why not rather try to produce one which simulates the child’s? If this
were then subjected to an appropriate course of education one would
obtain the adult brain "

— Alan Turing
Computing Machinery and Intelligence (1950)



Reinforcement learning

Sequential decision making

Learn to model behavior over time

Rewards may be stochastic and delayed
Trade off exploration vs exploitation

Generalization of supervised learning
- No full access to function to optimize

- Stateful environment, input affected by previous actions
Nonstationarity for samples (no i.i.d. assumption)



Reinforcement learning
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Reinforcement learning

Model-free
Policy-based: learn how to take actions in each state
- Value-based: learn the value of actions in each state

Model-based

Model environment to predict next states and rewards



Markov Decision Process (MDP)

Discrete-time stochastic control process defined by (S, A, P, R,~)
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Markov Decision Process (MDP)

Discrete-time stochastic control process defined by (S, A, P, R,~)
S: set of states

A: set of actions

P: transition probability distribution

!
Pl =p(sir1 =8"|se = s,ar = a)
R: reward function

R(J,

ss! T

E[r¢|ss = s,a: = d]
[0,1): discount factor



Markov Decision Process (MDP)

Goal: Take actions to maximize expected return over trajectories

Trajectory 7: path through state space up to a horizon
T = <50; ao,

S1, a1, S2, G2,

o)

Episodic setting: agent acts until a terminal state is reached

Return R;: cumulative future discounted rewards from s;

oo
Ry =7y +yrep1 + 772+ = Y7 g
k=0
Assuming infinite horizon:

if v > 1, R, is unbounded

if 0 <~ <1, R is well-defined and converges



Markov Decision Process (MDP)

Goal: Learn policy to maximize expected return over trajectories

Policy m(s, a) represents action probabilities p(a|s) in state s
Deterministic policy: a: = 7(s¢)
- Stochastic policy: a; ~ 7(alst)

Learn parameterized policy my with neural network weights 6
Network architecture follows action space A:

Discrete A: softmax layer to represent p(a|s;)

- Continuous A: output p and diagonal o to sample a; ~ N (p, o)



Derivative-free optimization

Objective: maximize E, .y [R(7)]

- Treat policy as a black box with parameters § € R?

- lteratively update 6 to make good returns more likely
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Cross-entropy method
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Mannor et al (2003)

The Cross Entropy method for Fast Policy Search
- Initialize pg € R?, 09 € R?

- At each iteration 4, draw L samples for 8! ~ N (u;, 02)
- Evaluate each trajectory 7! using parameters 6

- Select the top p% of samples by R(7') as the elite set

- Fit a new diagonal Gaussian to the elite set to obtain 11, 0;41
- At convergence, return final
+ No gradients needed; only forward pass

+ Converges quickly

+ Remarkably effective on many problems, e.g., Tetris
— Needs lots of samples



Evolution strategies
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Salimans et al (2017)
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
- Initialize ) € R?

- At each iteration i, sample Gaussian noise €', ..., el ~ N(0,1)
- Perturb 6; with each € to get 8! = 6; + o¢!

- Evaluate each trajectory 7 using parameters 6! and update

L
—p 4+ B¢
9,‘4_1 = 914— oL IZ;R(T ) €
+ No gradients needed; only forward pass

+ Easy to parallelize with low communication overhead

+ Competitive on Atari, OpenAl benchmarks
— Requires 3-10x more data



Policy gradient

Learn to increase expected return by gradient ascent over 0

Oiv1 =0; +n Vo E, [R(7)]
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Policy gradient: REINFORCE

13

Williams (1992)
Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

Learn to increase expected return by gradient ascent over 6

6is1 = 0, +1 Vo E, [R(7)

VQE ZR Vep 7'|9)
= ZR Vo p(r]0) -
= ZR 7) - Vg logp(r|0)

-p(710)

-
computed using sample averages

=E; [R(r) - Vg logp(|0)]

L
1
~ Z R(7Y) - Vg log p(7'|6)
1=1

[m]

=
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Policy gradient: REINFORCE Williams (1992)

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

+ + +

Learn to increase expected return by gradient ascent over 0

Oiy1 = 0; + 1 Vo Er [R(7)]
=0, + nE. [R(T) - Vglogp(r|0)]

i.e., increase logprob of 7 proportional to return R(7)

Unbiased estimator of gradient

Valid even if R is discontinuous or unknown

Only need p(7]0) to be differentiable

High variance, particularly for long trajectories

Assigns credit to whole trajectory rather than individual actions
Large number of samples needed
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Variance reduction: baseline

If R(r) >0 Vr

Estimator always modifies density
- 0; doesn't stabilize with fixed n

Subtract a baseline from the reward

VoE, [R(T)] = Vo E, [R(1) — 1]
+ Reduces variance

=E, [(R(r) — b) - Vg log p(7]0)]

+ Estimator remains unbiased

E, bV logp(r|0) = bVs > p(r]0) =bVel =0

Using estimate of E [R(7)] for b is a near-optimal choice
better than expected

i.e., increase logprob of 7 proportional to how much return R(7) is

[m]

=
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Variance reduction

T-1

T-1
t=0

Vo logp(7|0) = Vg log H We(at|5t)ngs,,+1 =Vy Z log mg(az|st)

t=0
+ No need to model environment P,

StSt41
— Rewards are distributed over trajectory

(hence model-free)

T-1 T-1
VoE. [R(7)] = E, l(z m)

Z Vo logme(a|st)
t=0

t=0 ]
Instead, consider estimator for reward at timestep ¢

Vg ]ET [’I"t] =E

t
T Z Vo log mg(ay |8t/)]
/=0
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Variance reduction

Sum over timesteps for full return

T—1 t
Vo E- [R(1)] = E; [Z T Z Vo log m(ay|sey)
t=0

|
T—1

Z Vo log my

t=0

17

T-1
= ET (at\st) Z Tt/‘|
t'=t
Can add baseline for each state

T-1 T-1
Z Vo log mg(ai|st) (
t=0

Z Ty — b(St)>]
t'=t
i.e., increase logprob of action a; proportional to how much future
return R;(7) = Zg;; T4 is better than expected

+ lIgnores prior rewards ry,

VoE, [R(T)] =E,

.,7¢_1 when evaluating action a; at s;
+ Estimator remains unbiased as long as b doesn't depend on a;

[m]

=



Value functions
State-value function V™ (s):

Expected value of being in state s and following policy 7

V7(s) =E; [Re]s: = ]
State-action-value function Q™ (s, a):
Expected value of taking action a from s and then following 7

Q" (s) = Ex [Re|st = s,a¢ = a

Advantage function A7 (s, a):

A" (s,a)

Expected value of taking action a from s instead of following 7

Q"(s,a) = V7(s)

18



Value functions

T-1

VoE. [R(r)] =E.

T-1
Z Vg logmy
t=0

(ar]st) Z Tt/]
t'=t

T-1

t=0

T-1
lVg log mg(arlst) Er, sy [

Substituting and reintroducing the baseline

Q" (
T-1
Vo E, [R(7)] = E-

t=0

Z Vo logmg(ar|st) (Q" (¢, ar) — b(st))

Defining b(s;) = V™ (s¢) is near-optimal (Greenmith et al, 2004)

T—1
VoE, [R(r)] = E.

Z Vo log mg(a|s:)A™ (s¢, at)]
=0
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Value functions

T-1

t=0

VoE- [R(7)] = E- Z Vg log m(a|st) A™ (st, at)

Want E, [A™] = 0 to keep variance low

i.e., positive advantage for good actions, negative for bad actions

Don’t know A7, can use an advantage estimator A such as
A(st) =T +Te41 +Tego +Tey3 +

+ Unbiased estimator

. b(St)

— High variance from single sample estimate

— Confounds the effect of actions ay, as11, aryo,

[m]

20



Variance reduction

Use discounted return when calculating advantage

A(St) =T+ Y41+ 727"t+2 + ’Ysrt+3 +

~ < 1 discounts the effect of actions that are far in the future

To keep E, [A™] = 0, also use discounted return when fitting
baseline to V7™ (s;)

+ Emphasizes near-term rewards when evaluating actions
+ Lowers variance

— Biased estimator

21



Variance reduction

Use V™ to estimate future rewards

A(se) = 1o+ yree1 + V12 + 7P rees +

L C))
=71+ + 72 7V (se43) — b(st)

=1+ 971 + 7V (se42) — b(se)
=71+ YV (st41) — b(se)

Use estimator of discounted V™ for both future rewards and baseline

A(s) = re + Vi(s141) — Va(se)

+ Explicit bias-variance tradeoff

i.e., fewer reward terms lower variance of estimator but increase bias

22



Actor-critic methods

Ast) =1 + VV(StH)

Actor: policy mg(a¢|s:)

Critic: value function V (s;)

Simplified algorithm:

Evaluate policy 7, to collect samples (s, R;)
- Fit V by minimizing 3> |V (s) — Rn|[?
- Update policy parameters using V'

T—1

Oiv1 =0, +nE Z Vo logmo(at|st) (m + 'YV(Sf+1) \7( ))
t—0

- V(St)
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Resources

- Reinforcement Learning: An Introduction (Sutton & Barto, 2017)

http://incompleteideas.net/book/bookdraft2017nov5. pdf

- OpenAl Spinning Up: code, environment, papers
https://spinningup.openai.com/

Berkeley RL course materials

http://rail.eecs.berkeley.edu/deeprlcourse/

24


http://incompleteideas.net/book/bookdraft2017nov5.pdf
https://spinningup.openai.com/
http://rail.eecs.berkeley.edu/deeprlcourse/

Policy gradients in NLP

- Optimization over non-differentiable metrics
e.g., text generation metrics like BLEU, ROUGE, CIDEr etc
Learned scores, e.g., neural teachers

- End-to-end training of sub-models for latent structure

Sample from policy over latent variables
Back-propagate loss to policy network

25
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Rennie et al (2016)

Self-critical Sequence Training for Image Captioning

Non-differentiable metrics

Optimize against CIDEr, BLEU, ROUGE, etc using REINFORCE

Use score of greedy decoding of output words as a baseline

i.e., encourage exploration of new words that improve rewards

1..a blue of a building with a blue umbrella on it -1.234499

2.ablue of a building with a blue and blue umbrella -1.253700

3.2 blue of a building with a blue umbrella -1.261105

4.ablue of a building with a blue and a blue umbrella on top of it -1.277339
5.a blue of a building with a blue and a blue umbrella -1.280045

(a) Ensemble of 4 Attention models
(Att2in) trained with XE.

1. a blue boat is sitting on the side of a building -0.194627
2. a blue street sign on the side of a building -0.224760

3. a blue umbrella sitting on top of a building -0.243250

4. a blue boat sitting on the side of a building -0.248849

5. a blue boat is sitting on the side of a city street -0.265613

(b) Ensemble of 4 Attention models
(Att2in) trained with SCST.
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Non-differentiable metrics Rennie et al (2016)

Self-critical Sequence Training for Image Captioning

- Optimize against CIDEr, BLEU, ROUGE, etc using REINFORCE

- Use score of greedy decoding of output words as a baseline

i.e., encourage exploration of new words that improve rewards

Training Evaluation Metric

Metric CIDEr BLEU4 ROUGEL METEOR
XE 90.9 28.6 523 24.1
XE (beam) | 94.0 29.6 52.6 25.2
CIDEr 106.3 31.9 54.3 25.5
BLEU 944 33.2 539 24.6
ROUGEL 97.7 31.6 554 24.5
METEOR 80.5 25.3 51.3 25.9
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27
Non-differentiable metrics Bosselut et al (2018)

Discourse-Aware Neural Rewards for Coherent Text Generation

- Train ‘teacher’ network to score how well-ordered a text is

- Incorporate teacher scores as a reward in SCST (Rennie et al, 2016)
to encourage generation of coherent text

Generated Recipe:

Wash the tomatoes and
cut them length-wise.
Set on plate. Slice the
mozzarella and put on
tomatoes. Add dressing
and serve cold.

Gold Recipe

Teacher



Latent structure

Andreas et al (2016)

28
Learning to Compose Neural Networks for Question Answering

- Dynamically assemble a network for each question from modules

- Sample module layout from policy and backpropagate loss for
answers to modules with REINFORCE

What cities are in Georgia?

v

Module inventory (Section 4.1)

Atlanta

-
0 [0 =T

©

Zookup | Georgia
” 4
Network layout (Section 4.2) Knowledge source
and
find[city] relate[in]
(®

lookup[Georgia]
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g 3
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° o
f

) O retate(in]
o g hna[my? g

1ookup[Georgia]

lookup[Georgia]




Latent

28

structure Andreas et al (2016)

Learning to Compose Neural Networks for Question Answering

Dynamically assemble a network for each question from modules

Sample module layout from policy and backpropagate loss for
answers to modules with REINFORCE

Is Key Largo an island?
(exists (and lookup|key-largo] find[island]))
yes: correct

‘What national parks are in Florida?
(and find[park] (relate[in] lookup[floridal))
everglades: correct

‘What are some beaches in Florida?

b

(exists (and lookup [beach]
(relate[in] loockup[floridal)))

What is in the sheep’s ear? What color is she  What is the man yes (daytona-beach): wrong parse
wearing? dragging?
o . 10
(describe [what] (describe(color] | (describe(wnar)  VWhatbeachcity is there in Florida?
(and find[sheep] find(wear]) find[man]) (and lookup[beach] lookup[city]
find(ear]))

(relate[in] lookup[floridal))
white boat (board) [none] (daytona-beach): wrong module behavior

] = =
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Lei et al (2016)

Rationalizing Neural Predictions

Latent structure

Define network to propose sequences of words from input text as
rationales for aspect-based sentiment analysis

- Sample rationales during inference and convey squared error on task
to rationale generator with REINFORCE

Review

the beer was n’t what i expected, and i‘m not sure it’s “true
to style”, but i thought it was delicious. a very pleasant
ruby red-amber color with a relatively brilliant finish, but a
limited amount of carbonation, from the look of it. aroma is
what i think an amber ale should be - a nice blend of
caramel and happiness bound together.

Ratings Look: 5 stars Smell: 4 stars
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Latent structure Lei et al (2016)

Rationalizing Neural Predictions

- Define network to propose sequences of words from input text as
rationales for aspect-based sentiment analysis

- Sample rationales during inference and convey squared error on task
to rationale generator with REINFORCE

a beer that is not sold in my neck of the woods , but managed to get while on a roadtrip . poured into an imperial pint glass with a
generous head that sustained life throughout . nothing out of the ordinary here , but a good brew still . body was kind of heavy , but
not thick . the hop smell was excellent and enticing . very drinkable

very dark beer . pours a nice finger and a half of creamy foam and stays throughout the beer . smells of coffee and roasted malt . hasa

ints of chocolate . if you like black coffee , you will love thi:
definitely gets smoother on the palate once it warms . it 's an ok porter but i feel there are much better one 's out there .

i really did not like this . it just seemed extremely watery . i dont ' think this had any carbonation whatsoever . maybe it was flat, who
knows ? but even if i got a bad brew i do n't see how this would possibly be something i 'd get time and time again . i could taste the
hops towards the middle , but the beer got pretty nasty towards the bottom . i would never drink this again , unless it was free . i 'm
kind of upset i bought this .

a : poured a nice dark brown with a tan colored head about half an inch thick , nice red/garnet accents when held to the light . little
clumps of lacing all around the glass , not too shabby . not terribly impressive though s : smells like a more guinness-y guinness really
there are some roasted malts there , signature guinness smells , less burnt though, a little bit of chocolate ... ... m : relatively thick , it
is n't an export stout or imperial stout , but still is pretty hefty in the mouth , very smooth , not much carbonation . not too shabby d :
not quite as drinkable as the draught, but still not too bad . i could easily see drinking a few of these .
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