Object Detection

Honghui Shi

IBM Research

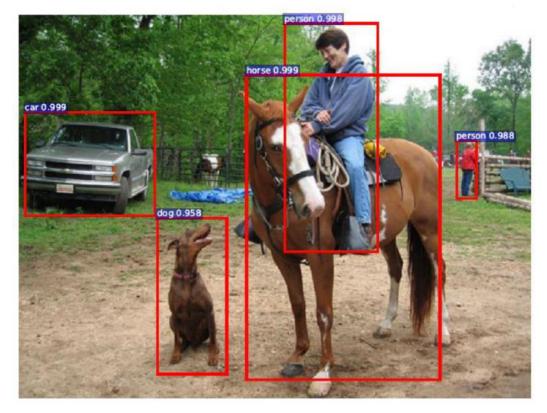
2018.11.27 @ Columbia

Outline

- Problem
- Evaluation
- Methods
- Directions

Problem

Image classification: Horse (People, Dog, Truck...)



Object detection: categories & locations of objects

Challenges

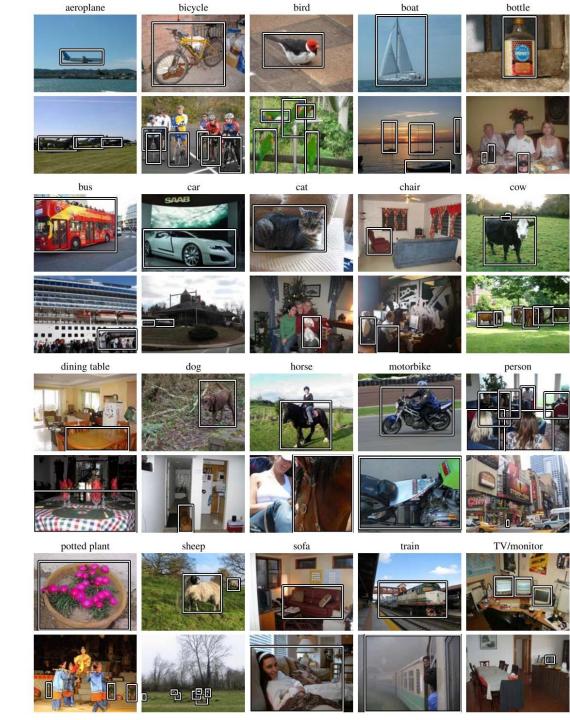
- From single image-level label to **multiple object instances**
- Object localization
- Object classification

Datasets

- PASCAL VOC
- ImageNet
- COCO
- Google Open Images
- KITTI
- Nvidia Al City

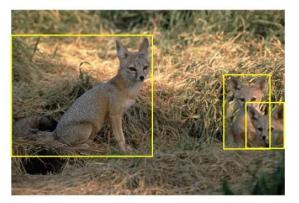
PASCAL VOC

- Dataset (voc2012)
 - 20 classes
 - Person
 - Animal (bird, cat, cow, dog, horse, sheep)
 - Vehicles (aeroplane, bicycle, boat, bus, car, motorbike, train)
 - Indoor (bottle, chair, dinning table, potted plant, sofa, tv monitor)
 - ~ 11k train/val, 27k boxes, 7k segmentations
- Challenge
 - 2005 2012

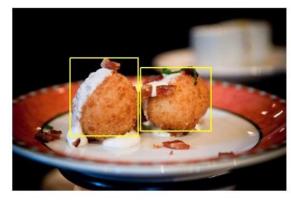


ImageNet

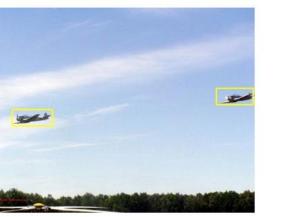
- Image Dataset
 - 200 categories
 - ~ 450k images
- Video Dataset
 - 30 categories
 - ~ 4000 videos



kit fox



croquette



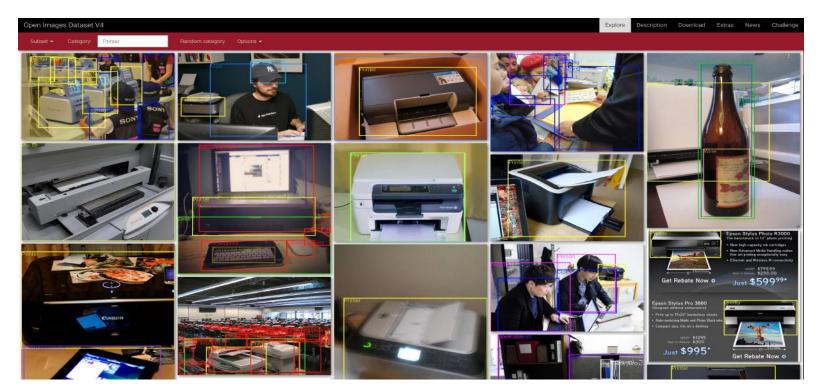
airplane

COCO

- Dataset
 - 80 categories
 - ~ 200k images
- Challenge
 - 2015 ~ now

Google OpenImages

- ~ 9M images overall
- 14.6M bounding boxes for 600 object classes on 1.74M images
- Complex scenes with several objects (8.4 per image on average).



KITTI

- Dataset
 - 7481/7518 train/val, 80k objects
- Leaderboard
 - 100+ entries

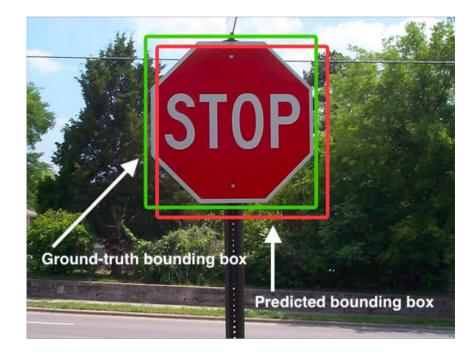
Nvidia Al City Dataset

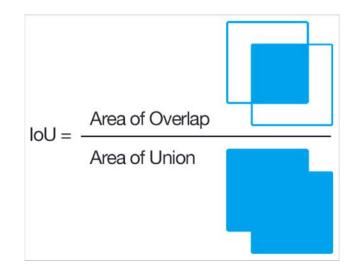
• Traffic cameras, challenge to be hosted in 2019

Evaluation Metrics

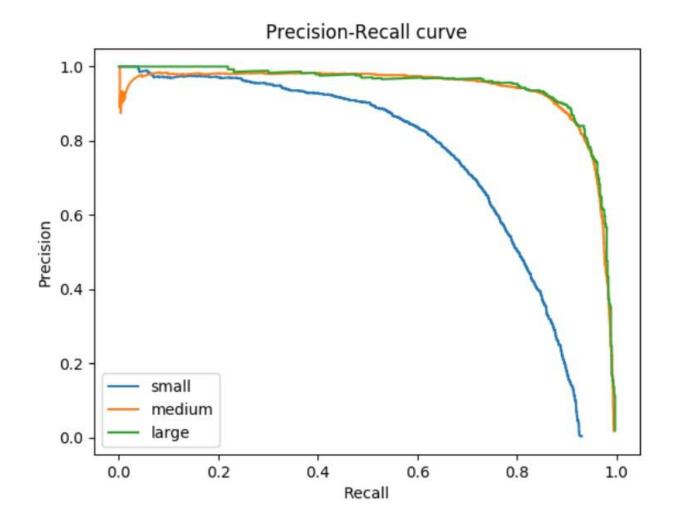
- Evolving Metrics
 - VOC
 - COCO
 - OpenImages
- Two core concepts
 - IoU
 - AP

IoU: Intersection over Union





AP: Average Precision

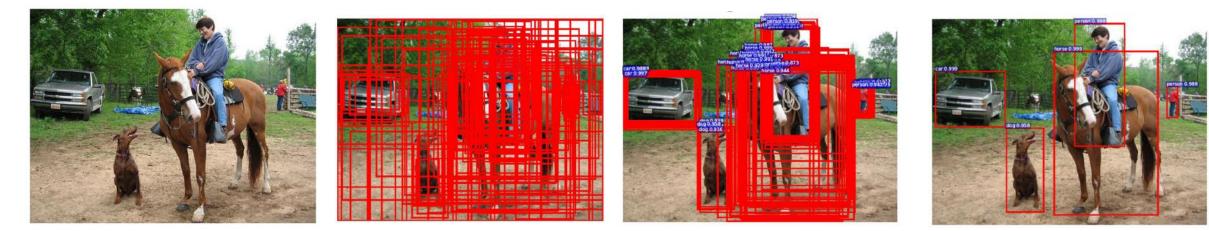


COCO Metric

Average Precision	P):
AP	<pre>% AP at IoU=.50:.05:.95 (primary challenge metric)</pre>
AP ^{IOU=.50}	% AP at IoU=.50 (PASCAL VOC metric)
AP ^{IOU=.75}	% AP at IoU=.75 (strict metric)
AP Across Scales:	
AP ^{small}	% AP for small objects: area < 32^2
AP ^{medium}	% AP for medium objects: 32^2 < area < 96^2
APlarge	% AP for large objects: area > 96^2
Average Recall (AR)	
AR ^{max=1}	% AR given 1 detection per image
AR ^{max=10}	<pre>% AR given 10 detections per image</pre>
AR ^{max=100}	% AR given 100 detections per image
AR Across Scales:	
AR ^{small}	% AR for small objects: area < 32^2
AR ^{medium}	% AR for medium objects: 32^2 < area < 96^2
AR ^{large}	% AR for large objects: area > 96^2

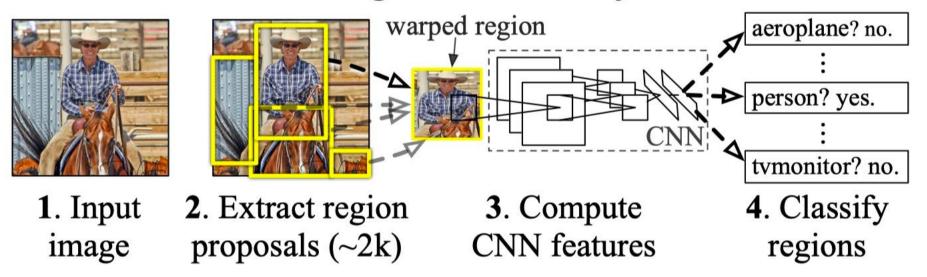
Methods

- Methods before ImageNet
 - DPM
- CNN based detectors
 - Proposal-based
 - Proposal-free

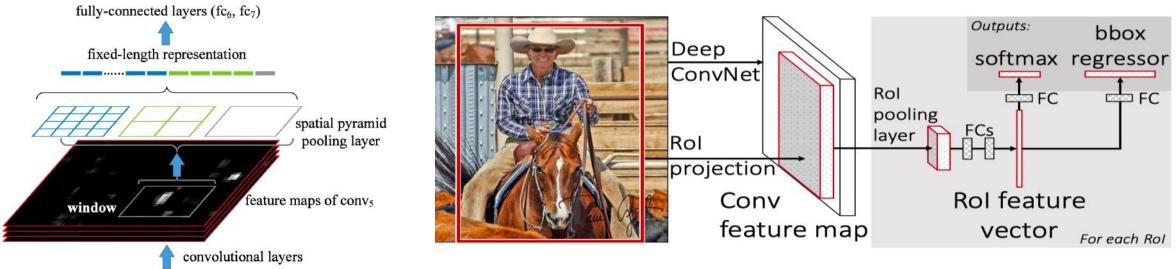


RCNN

R-CNN: Regions with CNN features



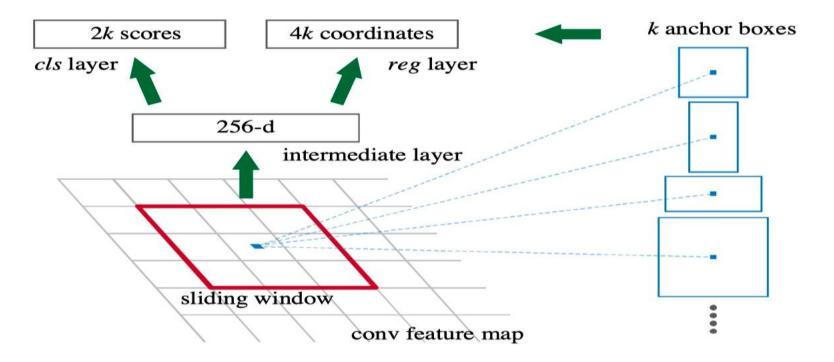
Fast RCNN



input image

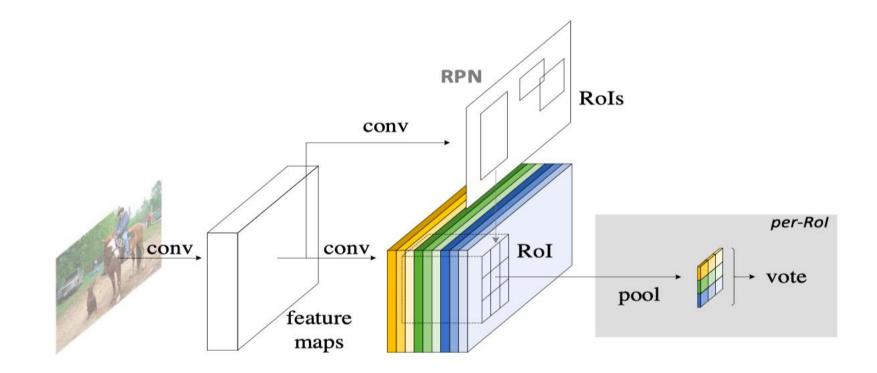
Ross Girshick et al., 2015

Faster RCNN

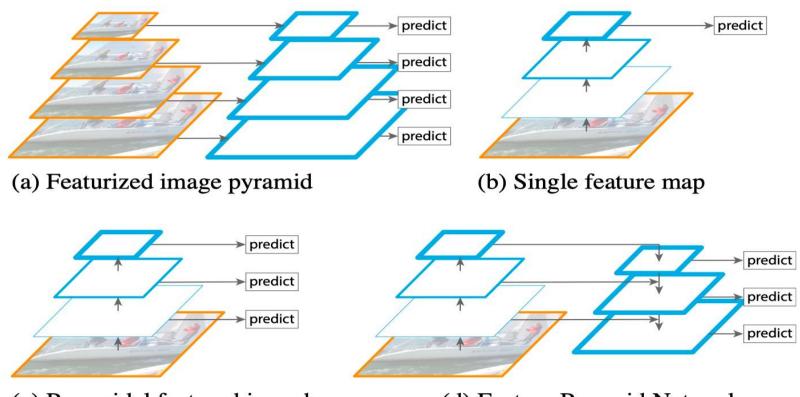


Shaoqing Ren et al., 2015

R-FCN



Jifeng Dai et al., 2016

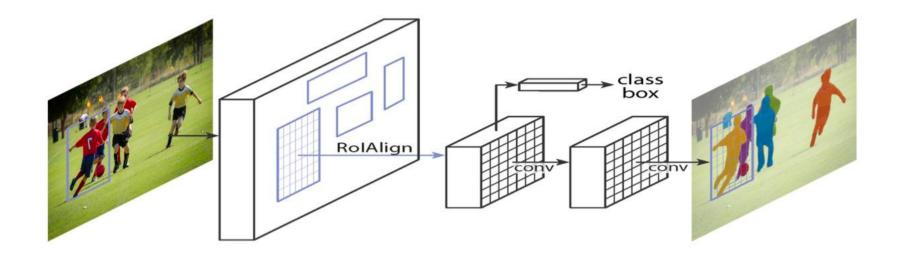


(c) Pyramidal feature hierarchy

(d) Feature Pyramid Network

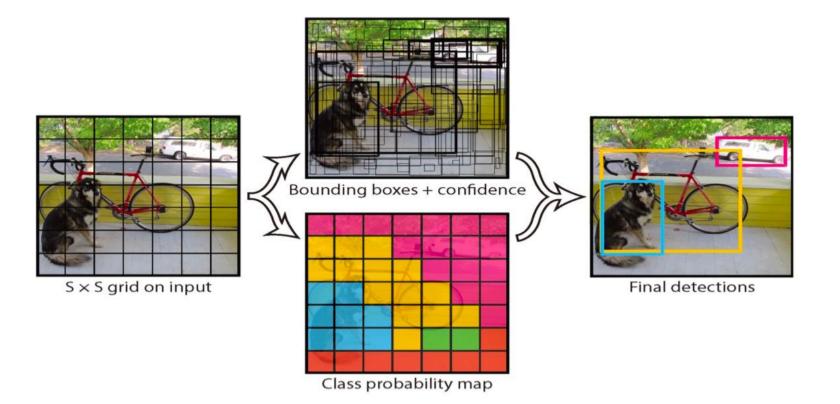
T.Y. Lin et al., 2017

Mask RCNN

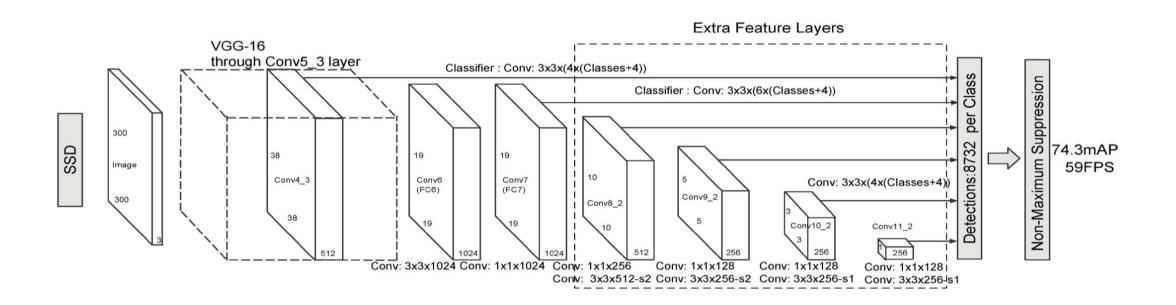


Wei Liu et al., 2016

YOLO



SSD



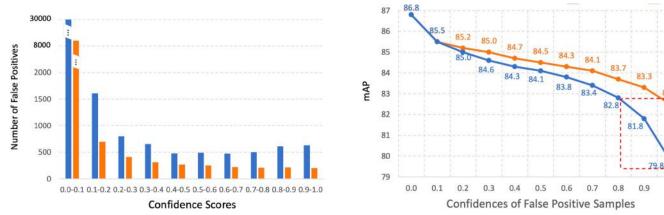
Wei Liu et al., 2016

Detection as a Multitask Learning Problem

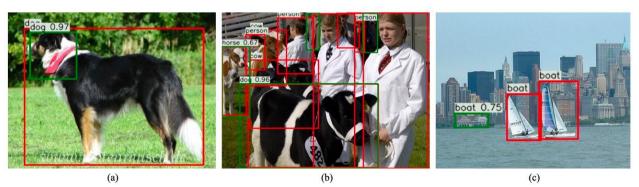
- How to achieve the best result for both localization and classification tasks in object detection?
- DCR as an example

DCR Motivation

- Question: How can we improve state-of-the-art object detectors?
- Observations with Faster RCNN:



Reducing *hard false positives* (those with high confidence scores) can improve the detection mAP significantly

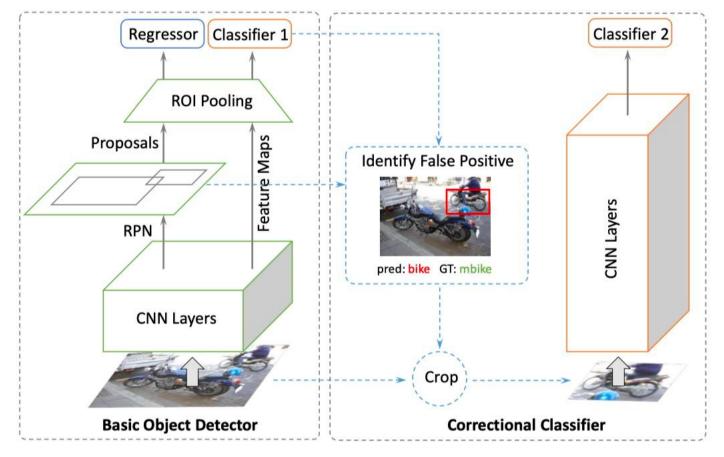


Can we use iterative proposal classification to improve object detection?

Examples of hard false positives

Revisiting RCNN: Awakening the Power of Classification in Faster RCNN, Bowen Cheng, et al., 2018

DCR Our Approach



Networks design:

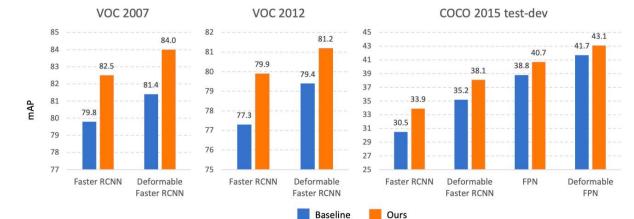
- Decoupled features
- Decoupled optimization
- Adaptive receptive field

Proposed decoupled classification refinement (DCR) module

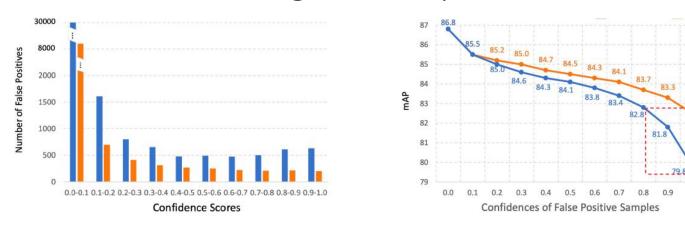
Revisiting RCNN: Awakening the Power of Classification in Faster RCNN, Bowen Cheng, et al., 2018

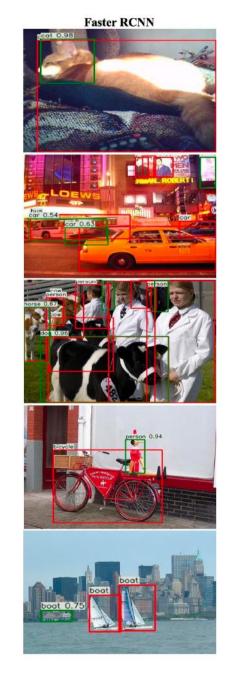
DCR Results

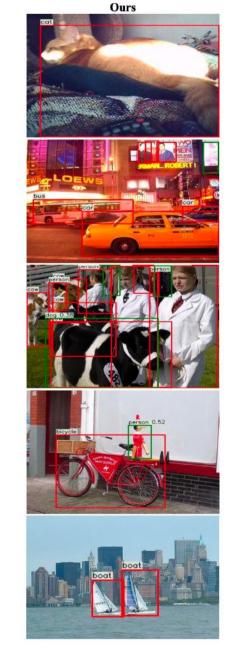
• Results on Pascal VOC & COCO



• How are we doing on false posotiveis?



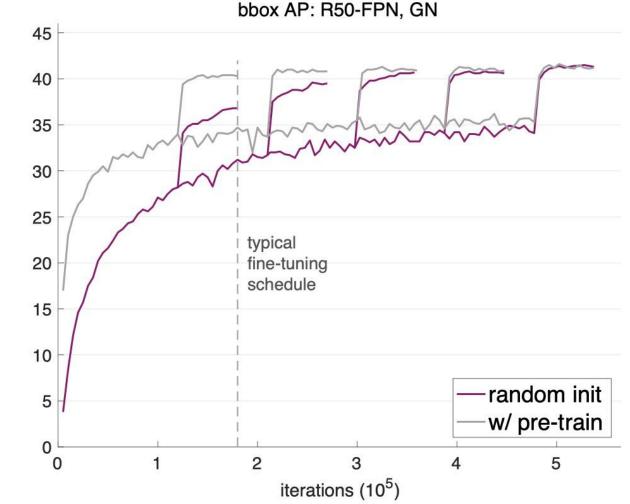




Revisiting RCNN: Awakening the Power of Classification in Faster RCNN, Bowen Cheng, et al., 2018

On Pre-training: Use ImageNet or from Scratch

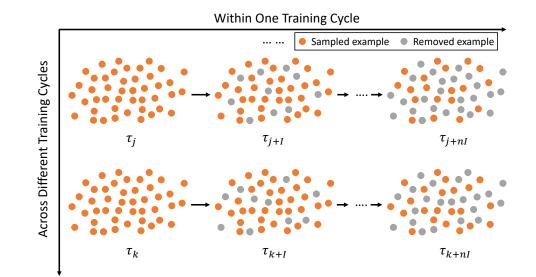
- Detectors without ImageNet pretraining can be trained as good as those with
 - When dataset is large
 - Use more iterations
 - Use initialization/normalization techniques
- What does this imply?



Rethinking ImageNet Pre-training, Kaiming He et al., 2018

On Pre-training: Knowledge Transferability

- Training can be more efficient
- Specialized knowledge learned on ImageNet pre-training can be effectively transferred to downstream tasks.



Method	Backbone	Pre-train Computation		00			1.11	-		00			AP_M^m	AP_L^m
FPN [15]	ResNet-50	100%	35.8	57.7	38.2	20.2	39.5	45.9	-	-	-	-	-	-
FPN [15]	ResNet-50	75%	35.9	57.8	38.4	21.1	39.7	46.6	-	-	-	-	-	-
FPN [15]	ResNet-50	86%	36.1	57.9	38.9	20.6	39.9	46.9	-	-	-	-	_	-
Mask R-CNN [7]	ResNet-50	100%	36.6	58.0	39.5	20.8	40.1	47.6	33.5	54.8	35.4	17.0	36.8	46.0
Mask R-CNN [7]	ResNet-50	75%	36.8	58.4	39.7	21.4	40.5	47.7	33.8	55.3	35.8	17.7	37.2	46.3
Mask R-CNN [7]	ResNet-50	86%	36.9	58.5	39.9	21.0	40.5	47.8	33.8	55.1	35.9	17.5	37.1	46.2

Revisiting Pre-training: An Efficient Training Method for Image Classification, Bowen Cheng, et al., 2018

Questions and Contact

shihonghui3@gmail.com