
1

Deep Learning for Computer
Vision, Speech, and Language

Liangliang Cao, Xiaodong Cui, Kapil Thadani

https://columbia6894.github.io/

Fall 2018

•How to register?

•Who we are

•Grading

• Homework

• Projects

• Course schedule and resource

• Some demo of deep learning

• Programming basics

•2

Outline

How	to	register	this	class?

• Unfortunately instructors do NOT have access to the
waiting list
– What we can do is to welcome sit-ins or independent study with

instructors

• Each department selected 20 students
– EE, CS and Data Science co-sponsored 60 students total

• Please drop early if you cannot follow or finish HW#1
– Talk to your department if you want to be listed in the waiting list

3

Lectures

4

A few guest lecturers
announced soon

Teaching	assistants

• Rajath Kumar
rm3497@columbia.edu

5

• Qiao Zhang
qz2301@columbia.edu

Website

• Slides and materials will be available on the website
https://columbia6894.github.io/

6

Purpose	of	This	Class

• For Columbia graduates, teach “what can we do with
deep neural networks”

• Why multi-modalities?
– Speech, Vision, and NLP are most popular fields for deep

learning
– By comparing three fields, you may feel deep networks are no

longer “black-box magic”
– We hope you can generalize these success to multi-modal

problem or a new domain

• How?
– Course, Homework and Projects

7

Grading

• 40% project
– In previous class the best team published paper in top/premium

conferences

• 40% homework
– HW1 is important
– Present one paper on the important research breakthough

• 20% paper presentation and course attendance

8

Examples	of	Successful	Projects

• Hassan Akbari and Himani Arora, Speech from Lip Videos,
ICASSP 2018

• Nikolai Yakovenko, Poker-CNN, AAAI 2016

• Chris Cleveland, PIXM (startup) 2016

• John Bowler and Mo Zhou, Axon Segmentation, WACV 2015

• Yin Cui, Y. Xiang, and K. Rong, Galaxy Image Retrieval, WACV
2014

9

Course	requirements

• Knowledgeable about NLP and/or speech and/or vision
and/or machine learning

• Fluent in Python.

• Know Tensorflow (or pyTorch) or you can learn it quickly

• Willing to work with GPUs.

10

Why	Python?

• Free (not like Matlab!)

• Much easier to use than CUDA C/C++

• THE choice for scientific computing and cloud service

• If you do not know python, please consider to drop coz it
will be too hard to follow the class.

11

How	to	access	GPU?

• Build one
– If you have a (relative new) desktop, you should add a GPU

card with $1000 (eg. NVidia GTX1080Ti or Titan XP)

• Use Google cloud
– $300 free credit for ever email
– Free credit via Columbia CRF (coming soon)

12

Course	schedule

1. Overview (class 1-4)
– Course overview and Tensorflow basic
– Review of NN and Optimization
– Review of NLP basic
– Review of CNN

2. Deep learning for Speech, Language, and Vision
Each class focuses one topic with

a) Lectures by the instructor/guest speaker
b) One homework per topic

13

Student	presentation

Details to be announced in the next class

Reference: last year’s procedure:
• Form a team with two students

• Select one paper (from the list suggested by the instructors)

• Prepare a 20 mins presentation, at least 15 pages slides

• Demos/source code analysis are welcome

14

Final	project

• Team work: 2-3 students per group
• Goal:
– Develop the state-of-the-art deep learning techniques.
– Try to solve real problems with the knowledge you learned

• Format:
– 4 pages double column (e.g., in ICASSP format)
– or 8 pages single column (e.g., in NIPS format)

• Evaluation
– Students’ vote: Idol Award
– Instructor’s pick: AI conference quality

15

(I only write recommendation letters for students with conference-quality projects)

Which	toolkit	shall	I	use	for	project

• Tensorflow (huge society, by Google)
– Keras (high level interface)
– Good for development and deployment

• Other choices:
– PyTorch (Good for sequential research)
– MxNet

16

Mastering	the	tools

• Use Python Notebook (Jupyter)
– http://jupyter.org/try
– colab.research.google.com
– Submit homework with results in python notebook!

• Use Git for team project
- Create a personal account on github.com
- Understand git commands

17

Power	of	Deep	Networks

• AlphaGo Zero by David Silver

• Google Cloud Vision API

• Visual Memory QA

• Super SloMo

• Watson Text to Speech and Watson Speech to Text

18

Short Break

https://columbia6894.github.io/

20

Programming: Tensorflow,
Keras and Homework

Liangliang Cao

https://columbia6894.github.io/

Install	Tensorflow

• Documentation
– https://www.tensorflow.org/
– We suggest to use virtual env

• Straightforward installation
– On cloud, you need setup a project
– On your local machine, type “pip install tensorflow” and install

other related libraries

• In this class, we’ll use Codelab to demonstrate some basic
concept
– https://colab.research.google.com/

21

Which	is	True	for	Tensorflow?

• A python/C framework of computing math expression

• Designed for large scale data

• Designed for the specific purpose of deep learning

22

Which	is	True	for	Tensorflow?

• A python/C framework of computing math expression
– Similar with Theano

• Designed for large scale data
– Excellent engineering

• Designed for the specific purpose of deep learning
– Tensorflow’s low level APIs are for general purpose.

23

Tensorflow’s Design

24

Keras Design

Keras is a wrapper of Tensorflow
from tensorflow.python import keras

25

Keras.Model

Model.fit() Model.predict() Model.evaluate()

Reference: https://keras.io/

A	Simple	Tensorflow Example

import tensorflow as tf
a = tf.add([2,1], [1,2])
print(a)

26

What is the output?

A	Simple	Tensorflow Example

import tensorflow as tf
a = tf.add([1,2], [2,1])
print(a)

27

What is the output?

a) [3, 3]
b) Tensor("Add:0", shape=(2, 1), dtype=int32)
c) None of above

A	Simple	Tensorflow Example

import tensorflow as tf
a = tf.add([1,2], [2,1])
print(a)

28

What is the output?

a

[1, 2]

[2, 1]

A tf graph includes symbolic objects

A tf session allocates memory to
evaluate symbolic objects

A	Simple	Tensorflow Example

import tensorflow as tf
a = tf.add([1,2], [2,1])
print(a)
with tf.Session() as sess:

print sess.run(a)

29

What is the new output?

Why	Graph	and	Session?

• Optimize computation. The graph model will be
optimized before evaluating

• Facilitate distributed computation, spread the work across
multiple CPUs, GPUs, or TPUs.

30

Tensorflow Low-level	APIs

Refer to Chip Huyen’s course on Tensorflow

31

A	Magic	Function

32

import tensorflow as tf
x = tf.placeholder(tf.float32)
y = 2*x + x*x
g = tf.gradients(x + y, [x, y])
with tf.Session() as sess:

print sess.run(g, feed_dict={x:1.0})

Tf.gradient allows automat gradient calculation.
Super useful for optimization (next class)

Another	Example

33

import tensorflow as tf
X = tf.placeholder(tf.float32, name='X')
Y = tf.placeholder(tf.float32, name='Y')

w = tf.get_variable('weights', initializer=tf.constant(0.0))
b = tf.get_variable('bias', initializer=tf.constant(0.0))

Y_predicted = w * X + b
loss = tf.square(Y - Y_predicted, name='loss')
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(loss)
with tf.Session() as sess:

sess.run(tf.global_variables_initializer())
for i in range(100): # run 100 epochs

for x, y in data:
sess.run(optimizer, feed_dict={X: x, Y:y})

w_out, b_out = sess.run([w, b])

From	Tensorflow to	Keras

34

import tensorflow as tf

from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Activation

model = Sequential()
model.add(Dense(10, input_dim=100, activation='softmax'))
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(X_train, Y_train, 128, nb_epoch=5, validation_data=(X_test, Y_test))
score = model.evaluate(X_test, Y_test)

From	Tensorflow to	Keras

35

import tensorflow as tf

from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense, Activation

model = Sequential()
model.add(Dense(10, input_dim=100, activation='softmax'))
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(X_train, Y_train, 128, nb_epoch=5, validation_data=(X_test, Y_test))
score = model.evaluate(X_test, Y_test)

Keras is simpler to use for classification/regression problems.

Keras has a lot of wrapper functions for network building

Keras does not provide many low level APIs for large scale data

Take-home	Work

36

Required:
• Install Jupiter Notebook
• Install Tensorflow and Keras
• Work on homework #1

Suggested:
• Create a github account
• Read Tensorflow and Keras tutorials

https://columbia6894.github.io/homework.html

