Optimization Techniques

for Neural Networks

Kapil Thadani
kapil@cs.columbia.edu

YAHOQ!

RESEARCH

Outline

o Learning as optimization

o First-order methods
- Stochastic gradient descent
- Momentum
- Nesterov accelerated gradient
- Adagrad
- RMSprop
- Adadelta
- Adam
- Adamax
- Nadam
- AMSgrad

o Second-order methods

- Newton’s method
- L-BFGS
- Hessian-free optimization

o Improving further

Prediction

Network with weights 0

Input

i
e

Given network weights 6 and new datapoint z, predict label ¢

Prediction

TS
s ‘ VS

R WK

!

ERNORN O
A

Learning

Given N training pairs (z;,y;), learn network weights 6

Loss function

Target

Yi

Training data

Prediction

(w1,91)
(w2, 92)

Network with weights 6

|

NS

NS
XY

48

%
A

]
KO

AV

A

(i, yi)

(&N, yN)

Input

;

Learning as optimization

0* =

argminE ¢y
0

Minimize expected loss over training dataset (a.k.a. empirical risk)
N

i=1

arg min lo(y;, 1) = argmin Ly
g1 > to(yir 9i) g1

Learning as optimization

argmin E /g
0

Minimize expected loss over training dataset (a.k.a. empirical risk)
N
0* =

i=1

arg min Z lo(yi,§;) = argmin Ly
0 0

Ly

Ideally convex

loss surface

6

-20 -20 &

RN Ge

Learning as optimization

N
argminE/y =
0

Minimize expected loss over training dataset (a.k.a. empirical risk)
0*

i=1

argemin Z Lo(yiy§i) = argemin Lo

Usually non-convex

RN Ge

Gradient descent

Given weights 6 = (w11, w1z - - wij; - -)T, the gradient of £ w.r.t. 0

oL 0L oL
V,C - <6w11’ 611)12 .

-
dwij >
always points in the direction of steepest increase

Algorithm:

1. Initialize some 6,

2. Compute VL w.r.t. 0,

3. Update in direction of negative gradient with some step size 7

9t+1 = 9,5 — 7]V£
4. Iterate until convergence

Stochastic gradient descent (SGD)

VL was computed over the full dataset for each update!

Instead update 6 with every training example (i.e., online learning)

Orp1 =0 — nw(yi, Qz)
or in mini-batches
itk
O =00 —n> Vi)

i=i

Advantages:
+ Fewer redundant gradient computations, i.e., faster
+ Parallelizable, optional asynchronous updates
+ High-variance updates can hop out of local minima

+ Can encourage convergence by annealing the learning rate

] = =

Momentum
Gradient descent can be stopped by small bumps (though SGD helps)
and can oscillate continuously in long, narrow valleys

Can simply combine current weight update with previous update
My = pmy —nVYe

Orr1 =0 + My
where p is a hyperparameter (typically 0.9, sometimes annealed)

Without momentum

With momentum
Advantages:

+ Dampened oscillations and faster convergence

[m]

=

Nesterov accelerated gradient (NAG)

Now we can somewhat anticipate the update direction with momentum,
but we still compute gradient w.r.t. 6,

Instead consider gradient at 6; + pm; accounting for future momentum

51‘, =0y + pmy

M1 = pmg — Vi
Orp1 = 0r +myp

Ori1 0: _—nVig,
Hmy
, 041
9,5 . et
- —nVig, -
, ,
My o« ™y
.
Momentum
Advantages:

NAG
+ Stronger theoretical guarantees for convex loss

+ Slightly better in practice than standard momentu%}

8

Nesterov (1983)

9

Adagrad Duchi et al. (2011)

Inputs and activations can vary widely in scale and frequency,
but they are always updated with the same learning rate n (or 1)

Here, each parameter’s learning rate is normalized by the RMS of
accumulated gradients
2
Vg1 = Vg + (ert)

I B
Ouss = b0 = = Vly,

where ¢ avoids division by zero

Advantages:
+ Lower learning rate for parameters with large/frequent gradients
+ Higher learning rate for parameters with small/rare gradients

+ 7 doesn’'t need much tuning (typically 0.01)

u]
o)

I

i
it
N)
pe)
0)

RMSpI’Op Tieleman & Hinton (2012)

Learning rates in Adagrad accumulate monotonically in the denominator,
eventually halting progress

Normalize each gradient by a moving average of squared gradients
(originally developed to improve adaptative rates across mini-batches)
2
Vi1 = pue + (1= p) (Vip,)

gy,
N/Ut-&-l + €

where p is a decay rate (typically 0.9)

9t+1 = et -

Advantages:

+ Exponentially decaying average prevents learning from halting
prematurely

u]
o)
I
i
it

10

11

Adadelta Zeiler (2012)

Learning rates in Adagrad accumulate monotonically (observed again),
and updates to 6 seem to have the wrong “units”, i.e., o

Exponentially decaying average of squared gradients (again), and
correcting units with Hessian (V?2/) approximation

i1 = pue + (1= p) (Vly,)?
(AG;)% + €
Orp1 =0 + AbO 4

Ay = — Vi,

Advantages:
+ No learning rate hyperparameter!
+ Numerator acts as an acceleration term like momentum
+ Robust to large, sudden gradients by reducing learning rate

+ Hessian approximation is efficient and always positive

] = =

it
N)
pe)
i)

Intermission: Visualizations

http://imgur.com/a/Hqolp

12

http://imgur.com/a/Hqolp

Adaptive Moment Estimation (Adam)

i3

Kingma & Ba (2015)
Momentum and adaptive learning rates are estimates of moments of V/
mey1 = Brmy + (1 — B1) Ve,

15* moment estimate
2
Vi1 = Pave + (1 — B2) (Vie,)
Correct for biases at initialization when moment estimates are 0

2" moment estimate
mt+1 -

M1
1—(By)tH!

N Vt+1
Vt41 = 1—

(B2) 1

M1
Oii1=0: —n
V0141 €

with hyperparameters 31 (typically 0.9) and (2 (typically 0.999)
Advantages:

+ Works well in practice

My

+ Update steps bounded by trust region: ’

Dt 41

Adamax

Scale gradients proportional to L., norm of past gradients instead of Ly

myp1 = Prme + (1 — 1) Ve,
U1 = max (B2 - uyg, [Viy,|)

Orir = Oy — — g L
' 1= (B0 wri

Advantages:

+ L, norms with p > 2 are not stable, but this is
+ No need for bias correction for u;

1% moment estimate
exp-weighted L., norm

14
Kingma & Ba (2015)

Nesterov-accelerated Adam (Nadam)

Nesterov-accelerated momentum for Adam

M1 = Brme + (1 — 1)V, Vi1 = Bo v + (1= B2) (Viy,)?
~ mMi41 ~ Vt+1
ML = T gy VL T T (B)t

Anticipate future momentum from current gradient

My = By + T4

— M
ﬁlt-‘rl

i1 +€

Orp1 =0, —n

Advantages:

+ Significant improvements over Adam on some tasks

15

Dozat (2016)

RN Ge

AMSgrad

Exponentially-moving averages do not guarantee a non-increasing
learning rate over minibatches, leading to convergence issues for
RMSprop, Adam, etc

mey1 = Prmy + (1 — B1) Ve, Vi1 = Bovg + (1 — Bo) (V)"
N - miy1 . - Vt+1
s = T et = Ty

Scale gradients with the maximum over current and past gradients

Vg1 = max(vg, Vr41)

Mip1

Or1 =0 —n m
Advantages:

+ Regret bound comparable to best known

+ Initial results look promising

+ May explain problems with adaptive methods (Wilson et al. 2018)

[m] = = =

16

Reddi et al. (2018)

17

Newton's method
Second-order Taylor approximation of £(6) around 6,:

L0, +A0) =~ L(O;)+VL(O,) A+ %A@THtAG

where the Hessian H; = V2L(6,) is an n x n matrix

To minimize this, compute the gradient w.r.t. Af and set it to 0

VL, +A0) ~ VLB, + HA = 0
AO = —H'VL(Y,)

Algorithm:
1. Initialize some 6,
2. Compute VL, and H; w.r.t. current 6,
3. Determine 1, e.g., with backtracking line search
4. Update towards minimum of local quadratic approximation around 6,

9t+1 - 6‘t — ’l?Htilv,Cet

5. lterate until convergence
Dae

u]

o)
I
i

it

Quasi-Newton methods: L-BFGS

18
Expensive to compute and store H;, so we approximate H; = 0 (or H; ')
e.g., BFGS update

s=10; — 0,1

z2=VLy, —VLy, ,
T T
2z Hy_1ss' Hi_4
H=H_1—— —
! LT T sTH; s
T T T
-1 Sz 1 Z5 X
or Ht (IZTS)Ht_l <IZTS>+2TS
Limited-memory BFGS (L-BFGS): store only the m most recent values of
s and z instead of H, '
Advantages:

+ Good global and local convergence bounds

+ Cost per iteration O(mn) while Newton's method is O (n?)
+ Storage is O(mn) instead of O(n?) for storing H,

[m]

=

Hessian-free optimization

10
Martens (2010), Martens & Sutskever (2011)
Minimize second-order Taylor expansion of £(0) with conjugate gradient
1. Set initial direction dy = V Ly,
2. Update 0y = 0; + ad; with a = d] (H,0; + VLy,)/d] H.d;
3. Update di1 = —V Ly, , + Bd; where 3 = VL
4. lterate up to n times

T
041

Hyd,/d] Hyd,
Requires only Hessian-vector products H;v

- Equivalent to directional derivative of V Ly, in the direction v
- Can approximate with finite differences, etc

- Gauss-Newton matrix G > 0 instead of H

- Tricks: damping, termination conditions, etc
Advantages:

+ Scales to very large datasets

+ Empirically leads to lower training error than first-order methods
+ Can be made faster by pre-training conjugate gradient, etc

[m]

=

20

Improving further Schaul et al. (2014)

Unit tests for stochastic optimization

Synthetic optimization landscapes with known difficulties used to
benchmark and analyze optimization algorithms

T p— Sacdoport

< B ﬂ ﬁ/v ‘m =

Vil e .=

1-D prototypes 2-D combinations

o F = = £ DA

Improving further Andrychowicz et al. (2016)

21

Learning to learn by gradient descent by gradient descent

Learned update rule instead of hand-designed algorithms
Orr1 =01 + 94(Ve,)

where g is modeled as outputs of a recurrent neural network (RNN) with
parameters ¢

t2
8, !
Optimizee 12 =C\ -

- i

]
t2 |
1
1

Optimizer

22

Improving further Wichrowska et al. (2017)

Learned optimizers that scale and generalize

Hierarchical RNN structure to track state for individual parameters,
parameter tensors (e.g., layers) and globally

| n pUt: [Global RNN }
- Momentum on multiple timescales { @ \
scaled by L> norm of avg gradients [Tensor ANN] Tonsor N | [Tensor AN | -+

- Average gradient magnitudes

; Jl
- Relative learning rate ﬁ@a

Parameter RNNs

Output: s oot
. . Scaled gradients, ——| Farameter RNN Update direction,
. Direction u pdates [Gi]j change in magnitude, ...

- Learning rate update

- Momentum hyperparameters

+ Improvements on MNIST compared to Adam, RMSprop

+ Competitive with non-learned optimizers on new problems

] = =

i
it
N)
pe)
0)

