
1

Optimization Techniques

for Neural Networks

Kapil Thadani
kapil@cs.columbia.edu

RESEARCH

2

Outline
◦ Learning as optimization

◦ First-order methods
- Stochastic gradient descent
- Momentum
- Nesterov accelerated gradient
- Adagrad
- RMSprop
- Adadelta
- Adam
- Adamax
- Nadam
- AMSgrad

◦ Second-order methods
- Newton’s method
- L-BFGS
- Hessian-free optimization

◦ Improving further

3

Prediction

Given network weights θ and new datapoint x, predict label ŷ

Input

Network with weights θ

Prediction

+1

+1

x

ŷ

3

Learning

Given N training pairs 〈xi, yi〉, learn network weights θ

Input

Network with weights θ

Prediction

Loss function

Target

`(yi, ŷi)

+1

+1

xi

ŷi

yi

Training data
〈x1, y1〉
〈x2, y2〉

...
〈xi, yi〉

...
〈xN , yN 〉

4

Learning as optimization

Minimize expected loss over training dataset (a.k.a. empirical risk)

θ∗ = arg min
θ

E `θ = arg min
θ

N∑
i=1

`θ(yi, ŷi) = arg min
θ
Lθ

4

Learning as optimization

Minimize expected loss over training dataset (a.k.a. empirical risk)

θ∗ = arg min
θ

E `θ = arg min
θ

N∑
i=1

`θ(yi, ŷi) = arg min
θ
Lθ

Lθ
Ideally convex
loss surface

4

Learning as optimization

Minimize expected loss over training dataset (a.k.a. empirical risk)

θ∗ = arg min
θ

E `θ = arg min
θ

N∑
i=1

`θ(yi, ŷi) = arg min
θ
Lθ

Lθ

Usually non-convex

5

Gradient descent

Given weights θ = 〈w11, w12 · · ·wij · · · 〉>, the gradient of L w.r.t. θ

∇L =

〈
∂L
∂w11

,
∂L
∂w12

· · · ∂L
∂wij

· · ·
〉>

always points in the direction of steepest increase

Algorithm:
1. Initialize some θ0
2. Compute ∇L w.r.t. θt
3. Update in direction of negative gradient with some step size η

θt+1 = θt − η∇L

4. Iterate until convergence

6

Stochastic gradient descent (SGD)

∇L was computed over the full dataset for each update!

Instead update θ with every training example (i.e., online learning)

θt+1 = θt − η∇`(yi, ŷi)

or in mini-batches

θt+1 = θt − η
i+k∑
j=i

∇`(yj , ŷj)

Advantages:
+ Fewer redundant gradient computations, i.e., faster
+ Parallelizable, optional asynchronous updates
+ High-variance updates can hop out of local minima
+ Can encourage convergence by annealing the learning rate

7

Momentum
Gradient descent can be stopped by small bumps (though SGD helps)
and can oscillate continuously in long, narrow valleys

Can simply combine current weight update with previous update

mt+1 = µmt − η∇` “velocity”
θt+1 = θt +mt+1 “position”

where µ is a hyperparameter (typically 0.9, sometimes annealed)

Without momentum With momentum

Advantages:
+ Dampened oscillations and faster convergence

8

Nesterov accelerated gradient (NAG) Nesterov (1983)

Now we can somewhat anticipate the update direction with momentum,
but we still compute gradient w.r.t. θt

Instead consider gradient at θt + µmt accounting for future momentum

θ̃t = θt + µmt

mt+1 = µmt − η∇`θ̃t
θt+1 = θt +mt+1

θt

θt+1

Momentum
mt

µmt

−η∇`θt
θt

θ̃t

θt+1

NAG
mt

µmt

−η∇`θ̃t

Advantages:
+ Stronger theoretical guarantees for convex loss
+ Slightly better in practice than standard momentum

9

Adagrad Duchi et al. (2011)

Inputs and activations can vary widely in scale and frequency,
but they are always updated with the same learning rate η (or ηt)

Here, each parameter’s learning rate is normalized by the RMS of
accumulated gradients

vt+1 = vt + (∇`θt)
2

θt+1 = θt −
η√

vt+1 + ε
∇`θt

where ε avoids division by zero

Advantages:
+ Lower learning rate for parameters with large/frequent gradients
+ Higher learning rate for parameters with small/rare gradients
+ η doesn’t need much tuning (typically 0.01)

10

RMSprop Tieleman & Hinton (2012)

Learning rates in Adagrad accumulate monotonically in the denominator,
eventually halting progress

Normalize each gradient by a moving average of squared gradients
(originally developed to improve adaptative rates across mini-batches)

vt+1 = ρ vt + (1− ρ) (∇`θt)
2

θt+1 = θt −
η√

vt+1 + ε
∇`θt

where ρ is a decay rate (typically 0.9)

Advantages:
+ Exponentially decaying average prevents learning from halting

prematurely

11

Adadelta Zeiler (2012)

Learning rates in Adagrad accumulate monotonically (observed again),
and updates to θ seem to have the wrong “units”, i.e., ∝ 1

θ

Exponentially decaying average of squared gradients (again), and
correcting units with Hessian (∇2`) approximation

vt+1 = ρ vt + (1− ρ) (∇`θt)
2

∆θt+1 = −
√

(∆θt)2 + ε
√
vt+1 + ε

∇`θt

θt+1 = θt + ∆θt+1

Advantages:
+ No learning rate hyperparameter!
+ Numerator acts as an acceleration term like momentum
+ Robust to large, sudden gradients by reducing learning rate
+ Hessian approximation is efficient and always positive

12

Intermission: Visualizations

http://imgur.com/a/Hqolp

http://imgur.com/a/Hqolp

13

Adaptive Moment Estimation (Adam) Kingma & Ba (2015)

Momentum and adaptive learning rates are estimates of moments of ∇`

mt+1 = β1mt + (1− β1)∇`θt 1st moment estimate

vt+1 = β2 vt + (1− β2) (∇`θt)
2

2nd moment estimate

Correct for biases at initialization when moment estimates are 0

m̂t+1 =
mt+1

1− (β1)t+1
v̂t+1 =

vt+1

1− (β2)t+1

θt+1 = θt − η
m̂t+1√
v̂t+1 + ε

with hyperparameters β1 (typically 0.9) and β2 (typically 0.999)

Advantages:

+ Update steps bounded by trust region:
∣∣∣∣ m̂t+1√

v̂t+1

∣∣∣∣ < max
(

1−β1√
1−β2

, 1
)

+ Works well in practice

14

Adamax Kingma & Ba (2015)

Scale gradients proportional to L∞ norm of past gradients instead of L2

mt+1 = β1mt + (1− β1)∇`θt 1st moment estimate
ut+1 = max (β2 · ut, |∇`θt |) exp-weighted L∞ norm

θt+1 = θt −
η

1− (β1)t+1

mt+1

ut+1

Advantages:
+ Lp norms with p > 2 are not stable, but this is
+ No need for bias correction for ut

15

Nesterov-accelerated Adam (Nadam) Dozat (2016)

Nesterov-accelerated momentum for Adam

mt+1 = β1mt + (1− β1)∇`θt vt+1 = β2 vt + (1− β2) (∇`θt)
2

m̂t+1 =
mt+1

1− (β1)t+1
v̂t+1 =

vt+1

1− (β2)t+1

Anticipate future momentum from current gradient

m̃t+1 = β1m̂t+1 +
1− β1
1− βt1

∇`θt

θt+1 = θt − η
m̃t+1√
v̂t+1 + ε

Advantages:
+ Significant improvements over Adam on some tasks

16

AMSgrad Reddi et al. (2018)

Exponentially-moving averages do not guarantee a non-increasing
learning rate over minibatches, leading to convergence issues for
RMSprop, Adam, etc

mt+1 = β1mt + (1− β1)∇`θt vt+1 = β2 vt + (1− β2) (∇`θt)
2

m̂t+1 =
mt+1

1− (β1)t+1
v̂t+1 =

vt+1

1− (β2)t+1

Scale gradients with the maximum over current and past gradients

ṽt+1 = max(ṽt, v̂t+1)

θt+1 = θt − η
m̂t+1√
ṽt+1 + ε

Advantages:
+ Regret bound comparable to best known
+ Initial results look promising
+ May explain problems with adaptive methods (Wilson et al. 2018)

17

Newton’s method
Second-order Taylor approximation of L(θ) around θt:

L(θt + ∆θ) ≈ L(θt) +∇L(θt)
>∆θ +

1

2
∆θ>Ht∆θ

where the Hessian Ht = ∇2L(θt) is an n× n matrix

To minimize this, compute the gradient w.r.t. ∆θ and set it to 0

∇L(θt + ∆θ) ≈ ∇L(θt) +Ht∆θ = 0

∆θ = −H−1t ∇L(θt)

Algorithm:
1. Initialize some θ0
2. Compute ∇Lθt and Ht w.r.t. current θt
3. Determine η, e.g., with backtracking line search
4. Update towards minimum of local quadratic approximation around θt

θt+1 = θt − ηH−1t ∇Lθt

5. Iterate until convergence

18

Quasi-Newton methods: L-BFGS

Expensive to compute and store Ht, so we approximate Ht � 0 (or H−1t)

e.g., BFGS update

s = θt − θt−1 z = ∇Lθt −∇Lθt−1

Ht = Ht−1 −
zz>

z>s
− Ht−1ss

>Ht−1

s>Ht−1s

or H−1t =

(
I − sz>

z>s

)
H−1t−1

(
I − zs>

z>s

)
+
ss>

z>s

Limited-memory BFGS (L-BFGS): store only the m most recent values of
s and z instead of H−1t

Advantages:
+ Good global and local convergence bounds
+ Cost per iteration O(mn) while Newton’s method is O

(
n3
)

+ Storage is O(mn) instead of O
(
n2
)
for storing Ht

19

Hessian-free optimization Martens (2010), Martens & Sutskever (2011)

Minimize second-order Taylor expansion of L(θ) with conjugate gradient
1. Set initial direction d0 = ∇Lθ0
2. Update θt+1 = θt + αdt with α = d>t (Htθt +∇Lθt)/d>t Htdt

3. Update dt+1 = −∇Lθt+1
+ βdt where β = ∇L>θt+1

Htdt/d
>
t Htdt

4. Iterate up to n times

Requires only Hessian-vector products Htv

- Equivalent to directional derivative of ∇Lθt in the direction v
- Can approximate with finite differences, etc
- Gauss-Newton matrix G � 0 instead of H
- Tricks: damping, termination conditions, etc

Advantages:
+ Scales to very large datasets
+ Empirically leads to lower training error than first-order methods
+ Can be made faster by pre-training conjugate gradient, etc

20

Improving further Schaul et al. (2014)
Unit tests for stochastic optimization

Synthetic optimization landscapes with known difficulties used to
benchmark and analyze optimization algorithms

1-D prototypes 2-D combinations

21

Improving further Andrychowicz et al. (2016)
Learning to learn by gradient descent by gradient descent

Learned update rule instead of hand-designed algorithms

θt+1 = θt + gφ(∇`θt)

where g is modeled as outputs of a recurrent neural network (RNN) with
parameters φ

22

Improving further Wichrowska et al. (2017)
Learned optimizers that scale and generalize

Hierarchical RNN structure to track state for individual parameters,
parameter tensors (e.g., layers) and globally

Input:
· Momentum on multiple timescales

scaled by L2 norm of avg gradients

· Average gradient magnitudes

· Relative learning rate

Output:
· Direction updates

· Learning rate update

· Momentum hyperparameters

+ Improvements on MNIST compared to Adam, RMSprop
+ Competitive with non-learned optimizers on new problems

