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Outline

o Language representation

- Bag of words

- Distributional hypothesis

- Word embeddings: word2vec, GloVe
- Beyond words: paragraph vector

o Recurrent neural networks

- Backpropagation through time
- Long short-term memory (LSTM)
- Gated recurrent units (GRU)

o NLP scenarios
- Classification

- Tagging
- Generation
- Text-to-text
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Formal language

(i) Set of sequences over symbols from an alphabet

(ii) Rules for valid sequences



Natural language

(i) Set of sequences over symbols from an alphabet
sentences

words

vocabulary

(ii) Rules for valid sequences
spelling
grammar

meaning



Sparse representations

Word: one-hot (1-of-') vectors

Document: "bag of words"
Emphasize rare words with inverse document
frequency (IDF)

Compare documents with cosine similarity

+ Simple and interpretable
— No notion of word order

— No implicit semantics

— Curse of dimensionality with large |V|




Sparse representations

Consider a neural network to read documents with
- at most T words

- drawn from vocabulary V

into a hidden layer with H units

How many parameters in the input layer for:
o Tweets?
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Sparse representations

Consider a neural network to read documents with
- at most T words

- drawn from vocabulary V
- into a hidden layer with H units

How many parameters in the input layer for:
o Tweets?

T =50, |V|=100K, H =100 — 0.5B

o News stories?

T = 2000, |V| = 200K, H =100 — 40B



Lexical semantics

dog



Lexical semantics

mammal pet
pack
hypernymy
holonymy
synonymy
dog canine
meronymy
hyponymy
paw
poodle

puppy



Lexical semantics

bark

CoO-occurrence

leash

slang

dawg

cat
opposition



Lexical semantics

dog

noun canine

wretch
polysemy

frankfurter

verb aggravate
shadow
name “Dog the

Bounty
Hunter”



Distributional approaches

Words that occur in similar contexts have similar meanings

e.g., record word co-occurrence within a context
window over a large corpus

dog

Weight association with pointwise mutual
information (PMI), etc

PMI(wy,ws2) = logy il

p(w1)p(ws)

+ Implicit semantics, i.e., related words have similar representations
— Domain dependence on training corpus

— Curse of dimensionality with large |V|



Latent Semantic Analysis
Construct term-document matrix

— Dl —

wgl) U)§2)
M o= |wd" V|
Singular value decomposition
] A1 U1
Ao o
M ~ Ul |u2jus| .. )\3 —
3
k

Select top k singular vectors for k-dim embeddings of words/docs
[m] = = =

8
Deerwester et al. (1990)
Indexing by Latent Semantic Analysis



word2vec

Mikolov et al. (2013)

9
Efficient Estimation of Word Representations in Vector Space
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word2vec

9
Mikolov et al. (2013)
Efficient Estimation of Word Representations in Vector Space

t-SNE projection of word embeddings from 58k Winemaker's Notes
http://methodmatters.blogspot.com/2017/11/using-word2vec-to-analyze-word.html
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Mikolov et al. (2013)

Efficient Estimation of Word Representations in Vector Space

word2vec
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t-SNE projection of name embeddings from all 7 Harry Potter books
https://github.com/nchah/word2vec4everything
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word2vec

Mikolov et al. (2013)

9
Efficient Estimation of Word Representations in Vector Space

- king

queen

- man

woman

Linear substructure for related words

[m]
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word2vec

Mikolov et al. (2013)
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Efficient Estimation of Word Representations in Vector Space

king

queen

man

‘__——__—____________—__—+ woman

Linear substructure for related words

]

=



word2vec

king — man

Mikolov et al. (2013)

£ king

queen

man

‘__——__—____________—__—+ woman

Linear substructure for related words

]

=

Efficient Estimation of Word Representations in Vector Space
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word2vec

Mikolov et al. (2013)
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Efficient Estimation of Word Representations in Vector Space
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Mikolov et al. (2013)

Efficient Estimation of Word Representations in Vector Space

word2vec

Relationship

Example 1

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer
Japan - sushi

Italy: Rome
small: larger
Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo
Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy
France: tapas

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza

Analogical reasoning
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word2vec Mikolov et al. (2013)
Distributed Representations of Words and Phrases and their Compositionality

Country and Capital Vectors Projected by PCA
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Visualizing lexical relationships



word2vec

Continuous Bag-of-Words (CBOW)

- Predict target w,; given context w; .,

<y Wi—1, W41,

11

Mikolov et al. (2013)

-y Wt
Wy Label
(W, U) = —log p(wi|wi—c - wiye) Loss
erhf
pw;lwi—e -+ Wige) = S~ o (@le]o) Softmax
k
U
1 « o
hy = % ; W wess Projection
70 wow W
| - ] | | | - | Input
Wt—c Wt—1 W41
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word2vec Mikolov et al. (2013)
Skip-gram
- Predict context wy_¢, ..., Wp_1,Wi1, ..., Weye given target wy
ce W1 W41 ce Wi4c
! L.

Label
(W, U) = - Z log p(we4|we)

Loss
QOO QOO QOO QOO Softmax
Projection
W

Input



word2vec

13

Mikolov et al. (2013)
Cost of computing Vp(wj|---) is proportional to V!

Alternative 1: Hierarchical softmax

- Predict path in binary tree representation of output layer
- Reduces to log, (V') binary decisions

p(wy ="dog"|--+) = (1 — a(Upht)) x a(Urht) x o(Ushy)




word2vec
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Mikolov et al. (2013)
Cost of computing Vp(w,|---) is proportional to V!

Alternative 2: Negative sampling

- Change objective to differentiate target vector from noisy samples
with logistic regression

K

max logo(u;rht) + ZEme‘I’ log o (=, ' hi)
k=1

where u; = U; = j'th column of U
and w; € context(w;)

- Noise distribution ¥ typically unigram, uniform or in between
- Number of samples K typically 5-20



word2vec
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Levy & Goldberg (2014)
Neural Word Embedding as Implicit Matrix Factorization

Skip-gram with negative sampling increases ujTht for real

word-context pairs (w;,w;) and decreases it for noise pairs
Given:

a matrix of d-dim word vectors W (|V,,| x d)
a matrix of d-dim context vectors U (|V,]| x d)

Skip-gram is implicitly factorizing the matrix M = WU "
What is M7

- Word-context matrix where each cell (i, ) contains PM I (w;,w;)
- If number of negative samples K > 1, this is shifted by a constant
—log K

- (Assuming large enough d and iterations)



GloVe

words

Global Vectors for Word Representation
S ((ui =

16
Pennington et al. (2014)

Similar words have similar ratios of co-occurrence probabilities for context
uj) ) =

p(wg|w;)
p(wi|w;)

~ Hw; . we
T 4 b+ By = log count(w;, wy,)

count(w;)
+ Explicitly encodes linear substructure between similar words
+ Scales to huge corpora

Pre-trained embeddings at https://nlp.stanford.edu/projects/glove/
- Common Crawl: 840B tokens,

V| =2.2M, d = 300
- Twitter: 27B tokens, |V| = 1.2M, d = 25 — 200


https://nlp.stanford.edu/projects/glove/
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Pennington et al. (2014)

Global Vectors for Word Representation
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GloVe

0.6

16
Pennington et al. (2014)
Global Vectors for Word Representation
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GloVe

16
Pennington et al. (2014)
Global Vectors for Word Representation
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GloVe
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Pennington et al. (2014)
Global Vectors for Word Representation
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word2vec with phrases

Distributed Representations of Words and Phrases and their Compositionality

17

Mikolov et al. (2013)

Newspapers
New York New York Times Baltimore Baltimore Sun
San Jose San Jose Mercury News Cincinnati Cincinnati Enquirer
NHL Teams
Boston Boston Bruins Montreal Montreal Canadiens
Phoenix Phoenix Coyotes ‘ Nashville Nashville Predators
NBA Teams
Detroit Detroit Pistons Toronto Toronto Raptors
Oakland Golden State Warriors ‘ Memphis Memphis Grizzlies
Airlines
Austria Austrian Airlines Spain Spainair
Belgium Brussels Airlines Greece Aegean Airlines
Company executives
Steve Ballmer Microsoft Larry Page Google
Samuel J. Palmisano IBM ‘Werner Vogels Amazon

Phrase analogies

Czech + currency | Vietnam + capital German + airlines Russian + river French + actress
koruna Hanoi airline Lufthansa Moscow Juliette Binoche
Check crown Ho Chi Minh City carrier Lufthansa Volga River Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De

Additive compositionality



Bilingual word embeddings
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Resources for word embeddings

19
Original code and pre-trained embeddings:

https://code.google.com/archive/p/word2vec/

Python library for word and document embeddings:
https://radimrehurek.com/gensim/models/word2vec.html

Tensorflow tutorial and implementation:

https://www.tensorflow.org/tutorials/representation/word2vec

FastText library and pre-trained embeddings for 157 languages:
https://github.com/facebookresearch/fastText


https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html
https://www.tensorflow.org/tutorials/representation/word2vec
https://github.com/facebookresearch/fastText

Beyond words

Can we add word vectors to make sentence/paragraph/doc vectors?
doc A =ay +as+as

doc B =b; + by + b3

cos(A,B) = A B

1Al 11B]]
1

~TAT BN bt b

a2~b1+a2'bg+a2~b3+

a3~b1+a3-b2+a3-b3)

= weighted all-pairs similarity over A and B

20



Paragraph vector (a.k.a doc2vec)
Distributed memory

- Predict target w; given context w;_..,
doc label d,,

21

Le & Mikolov (2014)

Distributed Representations of Sentences and Documents
<y Wi—1, W1,

vy Wige and
- At test time, hold U, W fixed and back-prop into expanded D

Wy Label
((W,U, D) = —log p(wi|wi—c - - - Weye, dip) Loss
QOO Softmax
U
Projection
D 1% W W
| | | - | | | | | | Input
dy, Wi Wi—1 Wil



Paragraph vector (a.k.a doc2vec)

Distributed Bag-of-Words (DBOW)

22
Le & Mikolov (2014)
Distributed Representations of Sentences and Documents
- Predict target n-grams wy, . .., wey. given doc label dj
- At test time, hold U fixed and back-prop into expanded D
wy cee Wiqe Label
| |
(U,D) = = log p(wei|dy) 0ss
i=0
Softmax
Projection
D

Input

=



Semantics are elusive

Visitors  saw

her

duck

with

binoculars
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Semantics are elusive

Visitors  saw her duck  with  binoculars
PRP VB
Did she duck or does she have a duck?
Who has the binoculars?
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Semantics are elusive

T N
Visitors  saw her duck  with binoculars
PRP$ NN

Did she duck or does she have a duck?

Who has the binoculars?

23



Semantics are elusive

Visitors  saw

T N
her duck  with binoculars
PRP$ NN

Did she duck or does she have a duck?

Who has the binoculars?

How many pairs of binoculars are there?

23



Recurrent connections

Output vector Yt
/’ T \\
I 1
! ]
. N 4
Hidden state hy

Input vector

Tt

N



Recurrent connections

Output vector

Hidden state

h
Input vector

he = on(Wy z¢ + Wiy he—1)



Recurrent connections

Output vector

Yt
Wiy

e \\

I 1

' ]

. N 4

Hidden state W,

W,
Input vector Tt

Yt = (by(VVLy ht)

he = ¢n(Wy, ze + Wiy hi—1)

24



Recurrent connections: Unfolding

X X9 T3



Recurrent connections: Unfolding
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Recurrent connections: Unfolding
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Recurrent connections: Unfolding
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Recurrent connections: Unfolding
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Recurrent connections: Unfolding

U1

>

h3

X

T3
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Recurrent connections: Unfolding

X
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Recurrent connections: Unfolding

U1

>

Z1

Ty

Iy
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Recurrent connections: Unfolding

U1

>

Z1

Ty

Ya
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Recurrent connections: Backprop through time

Y1 Y2 Y3 Ya
oL
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Recurrent connections: Backprop through time

231 Y2 Y3
oL oL oL
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h1 h: h3 ha
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Recurrent connections: Backprop through time

n Y2 Ys Ya
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Recurrent connections: Backprop through time
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Recurrent connections: Backprop through time
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Recurrent connections: Backprop through time
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Recurrent connections: Backprop through time

25
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Activation functions

26

oy is typically a smooth, bounded function, e.g., o, tanh

hi—1

tanh

by

hy = tanh(W],, z¢ + Wy, he—1)
Ty

— Susceptible to vanishing gradients

— Can fail to capture long-term dependencies



Long short-term memory (LSTM)

27
Gers et al (1999)
Learning to Forget: Continual Prediction with LSTM
Ct—1

he—q

)

©

Et = tanh(th T + I/th h/tfl)
Cct=C1+ G
Tt

Ct



Long short-term memory (LSTM)

27
Gers et al (1999)
Learning to Forget: Continual Prediction with LSTM
Ct—1

fr = o(Weeay + W hy—1)
X

Ty

ét = tanh(W;h T + I/th htfl)
a=fiOca+6

Ct



Long short-term memory (LSTM)

27
Gers et al (1999)
Learning to Forget: Continual Prediction with LSTM
Ct—1

-1

iy = oWy ae + Wi hi—1)
anh (X) . (&
W e

ét = tanh(V[{h T + I/th h/t—l)

fr = o(Weeay + W hy—1)
X

®

t

a=fiOca+i O

Ct
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Long short-term memory (LSTM) Gers et al (1999)

Learning to Forget: Continual Prediction with LSTM

Ct—1
fr = o(Weexy + Wa hi—1)
@ ” iy = o(Wiay + Wi he—1)
//‘ op = oW,y + W hy—1)
hi—1 tanh () (&

ét = tanh(th Ty + VVH. ht—l)

e =frOc1+it O

hy = o4 ® tanh(c;)

u]
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i
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Gated Recurrent Unit (GRU)

28

Cho et al. (2014)

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

hi—1

Tt

hy = tanh(W), z; + Wiy, by 1)
he = hy

hy

N



Gated Recurrent Unit (GRU)

28

Cho et al. (2014)

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

re = o(Weewy + Wy hi—q)
@nh

Tt

hy = tanh(W, z; + Wy, (re © hy_1))
he = he

hy



Gated Recurrent Unit (GRU)

28

Cho et al. (2014)

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

7

re =0 (Wxe + Wi hs_1)
2z =0(Woay + W hy—1)
hi—1 () tanh
hy =
hy =
Ty —>@ update

tanh(W, z, + W, (r: © hye—1))
2 O hy

hy



Gated Recurrent Unit (GRU)

28

Cho et al. (2014)

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

re =0(Weay + Wi hi—1)

2z =0(Woay + W hy—1)

hy = tanh(W, z; + Wy, (re © hy_1))
he = (1 —2) @ ht_1 + 2 @ hy




NLP scenarios: Classification

Given variable-length text w; - - - w,, (sentence, document, etc), find
label y

Normal discriminative approach:

Extract features over the input text
Train a linear classifier

Examples:
- Topic classification

- Sentiment analysis

Entailment recognition



Classification with RNNs

y
Z1

T2 €T3

Tn

(each z; is a sparse or dense representation of input word w;)

30



Classification with deep RNNs

30

-

-
-
;
<

-

[ ]

Z3
+ Can learn more abstract representations

— Slow computation because of recurrent dependencies



Classification with bidirectional RNNs

T T2

€T3

Tn

+ Less sensitive to vanishing gradients for long sequences

Y

30



Classification with CNNs

Kim ( 2014 )
wait
for

the
video
and
do
n't
rent

31
Convolutional Neural Networks for Sentence Classification

nx k representation of
sentence with static and
non-static channels

J |
Convolutional layer with
multiple filter widths and

| |
Max-over-time Fully connected layer
pooling with dropout and
feature maps softmax output
- Max-over-time pooling

- Two input embedding “channels” — one updated during training

=



Classification with Tree-RNNs

32

Tai et al (2015)
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

(i) Child-sum:

Computation graph follows dependency or constituency parse

- Good for arbitrary fan-out or unordered children
- Suited to dependency trees (input x; is head word)
(i) N-ary



Classification with Tree-RNNs

32
Tai et al (2015)
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

Tq T2 T3
Computation graph follows dependency or constituency parse
(i) Child-sum

(i) N-ary:

Fixed number of children, each parameterized separately

[m]

=

- Suited to binarized constituency parses (leaves take word inputs z;)

RN Ge



Classification with Tree-RNNs

33

Socher et al (2013)

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

IO,
TN
©
o .
spice
© ©
are just enough
parts
repetitive
Slow

it interesting




NLP scenarios: Tagging

Given variable-length text wy - - - w,, label spans zq, ..

'7Zm

Normal discriminative approach:
- Distribute labels over input to produce per-word labels 41, ..., yn
o BIO encoding: Beginning-z, Inside-z, Outside
o BILOU encoding: Beginning-z, Inside-z, Last-z, Outside, Unit-z
- Extract features over input words
- Train a linear-chain conditional random field

Examples:
- Part-of-speech tagging
- Chunking
- Named entity recognition
- Semantic role labeling

34



Tagging with RNNs

35
Y1 Y2 Y3 Ya
QOO QOO QOO QOO
——————— >
T €To I3 Ty
+ Effective with BIO/BILOU label encodings



Tagging with bidirectional RNNs

a1 Y2 Y3
QOO QOO

Y4
QOO

]

T T2 €3

Ty
+ Effective with BIO/BILOU label encodings

+ Less sensitive to vanishing gradients for long sequences

[m]

=

35



NLP scenarios: Generation

Probabilistic language modeling

- Distribution over sequences of words p(w,

.,wr) in a language
T
p(wi, ..., wy)

- Typically made tractable via conditional independence assumptions
Hp(wt|wt717 CWip)
t=1

- m-gram counts estimated from large corpora

- Distributions smoothed to tolerate data sparsity, e.g., Laplace
(add-one) smoothing, Kneser-Ney smoothing

- Evaluate on perplexity over held-out data

2% Zf\;1 log, P(w(i)

36



NLP scenarios: Generation

37
Bengio et al (2003)

A Neural Probabilistic Language Model
Discriminative language modeling

- Estimate n-gram probabilities with a discriminative model

plwglwi—1,...wi) = flwy,...,w)
e.g., model p(w¢|wi_1,...wi_y,) with a feed-forward neural net
i-th output = P(w, = i | context)
softmax
(e o eee )
most| computation hete

Clwy Clw-
“(..:) (Wi : wm—
T for wouds in
Table q N, Manix C 4 short list
look- :
in C“P shared puameters

actoss words

index for wy_p index for wy._y

RN Ge



Language modeling with auto-regressive RNNs
n Y2 Y3 Ya
GO0 000
LU |

Supply one-hot encoding of output 7, as input to timestep t + 1

Curriculum learning to overcome model initialization and speed up
convergence

38
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RNNLM Mikolov et al (2010)

Recurrent Neural Network Based Language Model

Model p(w;|wi—1, ... wi—p,) with an RNN

Or an ensemble of multiple RNNs, randomly initialized

| Model [ Perplexity |
Kneser-Ney 5-gram 141
Random forest [Xu 2005] 132
Structured LM [Filimonov 2009] 125
Feedforward NN LM 116
Syntactic NN LM [Emami 2004] 110
RNN trained by BP 113
RNN trained by BPTT 106
4x RNN trained by BPTT 98

Results on Penn Treebank corpus
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RNNLM Mikolov et al (2010)

Recurrent Neural Network Based Language Model

Model p(w|wi—1, ... wi—,) with an RNN
Or an ensemble of multiple RNNs, randomly initialized

130

[ —=— ANN mixture
w5t .-.| ——— RNN mixture + KN5

Perplexity (Penn corpus)

Number of RNN models

Comparison of single RNN vs RNN ensembles

RN Ge

] = =



RNNLMs with character CNNs

CAT

Char CNN

BlblE

«{ LSTM }» *‘ LSTM
Char CNN Char CNN
|
THE H|
(a)

(b)

THE

Recent models with character-CNN inputs and softmax alternatives

(c)

40
Jozefowicz et al (2015)
Exploring the Limits of Language Modeling
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RNNLMs with character CNNs Jozefowicz et al (2015)

Exploring the Limits of Language Modeling

WORD Tor-1 ToP-2 Top-3
INCERDIBLE INCREDIBLE NONEDIBLE EXTENDIBLE
WWW.A.COM WWW.AA.COM WWW.AAA.COM WWW.CA.COM

7546 7646 7534 8566
TowNHALI1 TowNHALL Dlc2 MoODSWING360
KOMARSKI KOHARSKI KONARSKI KOMANSKI

Nearest neighbors in character-CNN embedding space
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Transfer learning with NNLMs

Pre-trained neural language models are useful in classification tasks

SNLI NER SQUAD Coref SRL SST-5

) 9:9:9:9:9.

(X

== Baseline

Performance gains with ELMo representations added to various models

Deep Contextualized Word Representations (Peters et al., 2018)

Universal Language Model Fine-tuning for Text Classification (Howard and Ruder,
2018)

Improving Language Understanding by Generative Pre-Training (Radford et al., 2018)
Dr <> <=y <2r T 9ac



NLP scenarios: Text-to-text
Given variable-length text xq -

Traditional approaches:
Pipelined models

2, (sentence, document, etc),
produce output text yi,--- , ¥y, under some transformation
- Constrained optimization

Examples:

Machine translation
Document summarization

- Sentence simplification

- Paraphrase generation

42



Decoding with RNNs

Input context ¢

Output words 1, ...

Y1 Y2 Y3
@Jele) @lole) 000
7yTIL \M

q
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Decoding with RNNs

Input context ¢
Output words 1,

s Ym

43



Encoding with RNNs

Input words x4,

O
Output representation h,,

1

€2

43



Sequence-to-sequence learning

43
Sutskever, Vinyals & Le (2014)

Sequence to Sequence Learning with Neural Networks
n

Y2 Y3
@lol® QOO QOO0
Input words x1,...,2,
Output words y1,...,uym | |\ [ [\ | | N
Z1 €2 Tn,



Sequence-to-sequence learning

Produces a fixed length representation of input

- “sentence embedding” or “thought vector”

—1F

-2

-4

-5

OMary admires John

OMary is in love with John

OMary respects John
OJohn admires Mary
OdJohn is in love with Mary
OdJohn respects Mary
-6 -4 -2 0 2 4 6 8 10

u]
o)
I
i
it

Sutskever, Vinyals & Le (2014)

Sequence to Sequence Learning with Neural Networks

N



Sequence-to-sequence learning

44
Sutskever, Vinyals & Le (2014)
Sequence to Sequence Learning with Neural Networks

Produces a fixed length representation of input
- “sentence embedding” or “thought vector”

O | was given a card by her in the garden

O Inthe garden , she gave me a card

O She gave me a card in the garden

0
-5 O She was given a card by me in the garden
O In the garden , | gave her a card
-10
181 O I gave her a card in the garden
_20 . . s . . s ,
-15 -10 -5 0 5 10 15



Overview: processing text with RNNs
Inputs

- One-hot vectors for words/characters/previous output
Embeddings for words/sentences/context

- CNN over characters/words/sentences
Recurrent layers

Forward, backward, bidirectional, deep

- Activations: o, tanh, gated (LSTM, GRU), ReLU initialized with identity
Outputs

- Softmax over words/characters/labels
- Absent (i.e., pure encoders)

a5



