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Outline

◦ Language representation
- Bag of words
- Distributional hypothesis
- Word embeddings: word2vec, GloVe
- Beyond words: paragraph vector

◦ Recurrent neural networks
- Backpropagation through time
- Long short-term memory (LSTM)
- Gated recurrent units (GRU)

◦ NLP scenarios
- Classification
- Tagging
- Generation
- Text-to-text
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Formal language

(i) Set of sequences over symbols from an alphabet

sentences words vocabulary

utterances morphemes

documents MWEs
...

...

(ii) Rules for valid sequences

spelling orthography, morphology

grammar syntax

meaning semantics, discourse, pragmatics, · · ·
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Natural language

(i) Set of sequences over symbols from an alphabet

sentences words vocabulary

utterances morphemes

documents MWEs
...

...

(ii) Rules for valid sequences

spelling orthography, morphology

grammar syntax

meaning semantics, discourse, pragmatics, · · ·
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Sparse representations

Word: one-hot (1-of-V ) vectors
Document: "bag of words"

Emphasize rare words with inverse document
frequency (IDF)

Compare documents with cosine similarity

0
...
1
...
0

a

dog

zygote

|V |

+ Simple and interpretable
− No notion of word order
− No implicit semantics
− Curse of dimensionality with large |V |
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Sparse representations

Consider a neural network to read documents with:
· at most T words
· drawn from vocabulary V
· into a hidden layer with H units

How many parameters in the input layer for:
◦ Tweets?

◦ News stories?
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Sparse representations

Consider a neural network to read documents with:
· at most T words
· drawn from vocabulary V
· into a hidden layer with H units

How many parameters in the input layer for:
◦ Tweets?
T = 50, |V | = 100K, H = 100 → 0.5B

◦ News stories?
T = 2000, |V | = 200K, H = 100→ 40B
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Lexical semantics

dog
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paw
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Lexical semantics

dog

mammal pet

hypernymy

poodle puppy

hyponymy

noun canine
synonymy

pack

holonymy

paw

meronymy

cat

opposition
bark

leash

co-occurrence

dawg

slang

wretch
frankfurter

verb aggravate
shadow

polysemy

name “Dog the
Bounty
Hunter”
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Distributional approaches

Words that occur in similar contexts have similar meanings

e.g., record word co-occurrence within a context
window over a large corpus

Weight association with pointwise mutual
information (PMI), etc

PMI(w1, w2) = log2

p(w1, w2)

p(w1)p(w2)

dog
:

0.3
:

0.1
:

0.2
:

bark

leash

wag

|V |

+ Implicit semantics, i.e., related words have similar representations
− Domain dependence on training corpus
− Curse of dimensionality with large |V |
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Latent Semantic Analysis Deerwester et al. (1990)
Indexing by Latent Semantic Analysis

Construct term-document matrix

M =

|D|

|V |

w
(1)
1 w

(2)
1 · · ·

w
(1)
2

. . .

...

Singular value decomposition

M ≈ u1 u2 u3 ..

λ1

λ2

λ3

. . .

v1
v2
v3

:

k

k

Select top k singular vectors for k-dim embeddings of words/docs
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word2vec Mikolov et al. (2013)
Efficient Estimation of Word Representations in Vector Space
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word2vec Mikolov et al. (2013)
Efficient Estimation of Word Representations in Vector Space

t-SNE projection of word embeddings from 58k Winemaker’s Notes
http://methodmatters.blogspot.com/2017/11/using-word2vec-to-analyze-word.html

http://methodmatters.blogspot.com/2017/11/using-word2vec-to-analyze-word.html
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word2vec Mikolov et al. (2013)
Efficient Estimation of Word Representations in Vector Space

t-SNE projection of name embeddings from all 7 Harry Potter books
https://github.com/nchah/word2vec4everything

https://github.com/nchah/word2vec4everything
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word2vec Mikolov et al. (2013)
Efficient Estimation of Word Representations in Vector Space

king

queen

man

womanuncle

aunt

sir

madam

Linear substructure for related words
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word2vec Mikolov et al. (2013)
Efficient Estimation of Word Representations in Vector Space

king
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word2vec Mikolov et al. (2013)
Efficient Estimation of Word Representations in Vector Space

king

queen

man

woman

king − man

Linear substructure for related words
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word2vec Mikolov et al. (2013)
Efficient Estimation of Word Representations in Vector Space

king

queen

man

woman

king − man
king − man + woman

Linear substructure for related words
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word2vec Mikolov et al. (2013)
Efficient Estimation of Word Representations in Vector Space

Analogical reasoning
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word2vec Mikolov et al. (2013)
Distributed Representations of Words and Phrases and their Compositionality

Visualizing lexical relationships
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word2vec Mikolov et al. (2013)
Continuous Bag-of-Words (CBOW)

- Predict target wt given context wt−c, . . . , wt−1, wt+1, . . . , wt+c

wt

`(W,U) = − log p(wt|wt−c · · ·wt+c)

· · · · · ·
wt−c wt−1 wt+1 wt+c

W W W W

U

ht =
1

2c

c∑
i=−c
i 6=0

W>wt+i

p(wj |wt−c · · ·wt+c) =
eUjht∑
k e

Ukht

Input

Projection
(averaged)

Softmax

Loss

Label
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word2vec Mikolov et al. (2013)
Skip-gram

- Predict context wt−c, . . . , wt−1, wt+1, . . . , wt+c given target wt

wt−c wt−1 wt+1 wt+c· · · · · ·

`(W,U) = −
c∑

i=−c
i 6=0

log p(wt+i|wt)

· · · · · ·

wt

W

U U U U

ht = W>wt

p(wj |wt) =
eUjht∑
k e

Ukht

Input

Projection

Softmax

Loss

Label
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word2vec Mikolov et al. (2013)

Cost of computing ∇p(wj | · · · ) is proportional to V !

Alternative 1: Hierarchical softmax
- Predict path in binary tree representation of output layer
- Reduces to log2(V ) binary decisions

p(wt = “dog”| · · · ) = (1− σ(U0ht))× σ(U1ht)× σ(U4ht)

0

1 2

3 4 5 6

cow duck cat dog she he and the
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word2vec Mikolov et al. (2013)

Cost of computing ∇p(wj | · · · ) is proportional to V !

Alternative 2: Negative sampling
- Change objective to differentiate target vector from noisy samples
with logistic regression

max log σ(u>j ht) +

K∑
k=1

Ewm∼Ψ log σ(−um>ht)

where uj = Uj = j’th column of U
and wj ∈ context(wt)

- Noise distribution Ψ typically unigram, uniform or in between
- Number of samples K typically 5–20
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word2vec Levy & Goldberg (2014)
Neural Word Embedding as Implicit Matrix Factorization

Skip-gram with negative sampling increases u>j ht for real
word-context pairs 〈wt, wj〉 and decreases it for noise pairs

Given:
· a matrix of d-dim word vectors W (|Vw| × d)
· a matrix of d-dim context vectors U (|Vu| × d)

Skip-gram is implicitly factorizing the matrix M = WU>

What is M?
- Word-context matrix where each cell (i, j) contains PMI(wi, wj)
- If number of negative samples K > 1, this is shifted by a constant
− logK

- (Assuming large enough d and iterations)
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GloVe Pennington et al. (2014)
Global Vectors for Word Representation

Similar words have similar ratios of co-occurrence probabilities for context
words

f
(
(ui − uj)>ũk

)
=
p(wk|wi)

p(wk|wj)

⇒ u>i ũk + bi + b̃k = log
count(wi, wk)

count(wi)

+ Explicitly encodes linear substructure between similar words
+ Scales to huge corpora

Pre-trained embeddings at https://nlp.stanford.edu/projects/glove/
· Common Crawl: 840B tokens, |V | = 2.2M, d = 300

· Twitter: 27B tokens, |V | = 1.2M, d = 25− 200

https://nlp.stanford.edu/projects/glove/
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GloVe Pennington et al. (2014)
Global Vectors for Word Representation

Linear substructure (male vs female)
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GloVe Pennington et al. (2014)
Global Vectors for Word Representation

Linear substructure (city vs zip code)
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GloVe Pennington et al. (2014)
Global Vectors for Word Representation

Linear substructure (company vs CEO)
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GloVe Pennington et al. (2014)
Global Vectors for Word Representation

Linear substructure (comparative vs superlative adjectives)
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word2vec with phrases Mikolov et al. (2013)
Distributed Representations of Words and Phrases and their Compositionality

Phrase analogies

Additive compositionality
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Bilingual word embeddings

Aligned embeddings for English and German (Luong et al., 2015)
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Resources for word embeddings

Original code and pre-trained embeddings:
https://code.google.com/archive/p/word2vec/

Python library for word and document embeddings:
https://radimrehurek.com/gensim/models/word2vec.html

Tensorflow tutorial and implementation:
https://www.tensorflow.org/tutorials/representation/word2vec

FastText library and pre-trained embeddings for 157 languages:
https://github.com/facebookresearch/fastText

https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html
https://www.tensorflow.org/tutorials/representation/word2vec
https://github.com/facebookresearch/fastText
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Beyond words

Can we add word vectors to make sentence/paragraph/doc vectors?
doc A = a1 + a2 + a3

doc B = b1 + b2 + b3

cos(A,B) =
A ·B

||A|| · ||B||

=
1

||A|| · ||B||
(a1 · b1 + a1 · b2 + a1 · b3+
a2 · b1 + a2 · b2 + a2 · b3+

a3 · b1 + a3 · b2 + a3 · b3)

= weighted all-pairs similarity over A and B
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Paragraph vector (a.k.a doc2vec) Le & Mikolov (2014)
Distributed Representations of Sentences and DocumentsDistributed memory

- Predict target wt given context wt−c, . . . , wt−1, wt+1, . . . , wt+c and
doc label dk

- At test time, hold U , W fixed and back-prop into expanded D

wt

`(W,U,D) = − log p(wt|wt−c · · ·wt+c, dk)

· · · · · ·
dk wt−c wt−1 wt+1 wt+c

D W W W W

U

Input

Projection
(concatenated)

Softmax

Loss

Label



22

Paragraph vector (a.k.a doc2vec) Le & Mikolov (2014)
Distributed Representations of Sentences and Documents

Distributed Bag-of-Words (DBOW)
- Predict target n-grams wt, . . . , wt+c given doc label dk
- At test time, hold U fixed and back-prop into expanded D

wt wt+c· · ·

`(U,D) = −
c∑

i=0

log p(wt+i|dk)

· · ·

dk

D

U U

Input

Projection

Softmax

Loss

Label
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Semantics are elusive

Visitors saw her duck with binoculars .

Did she duck or does she have a duck?

Who has the binoculars?

How many pairs of binoculars are there?
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Semantics are elusive

Visitors saw her duck with binoculars .
NNS VBD PRP VB IN NNS .

ccomp

Did she duck or does she have a duck?

Who has the binoculars?

How many pairs of binoculars are there?
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Semantics are elusive
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Recurrent connections

Output vector

Hidden state

Input vector

ht

xt

yt
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Recurrent connections

Output vector

Hidden state

Input vector

ht

xt

yt

Wxh

Why

Whh

yt = φy(Why ht)

ht = φh(Wxh xt +Whh ht−1)
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Recurrent connections: Unfolding

x1 x2 x3 x4 · · ·
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Recurrent connections: Backprop through time
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Recurrent connections: Backprop through time

x1 x2 x3 x4 · · ·

h1

Wxh

y1

Why

h2

Wxh

Whh

y2

Why

h3

Wxh

Whh

y3

Why

h4

Wxh

Whh

y4

Why

∂L
∂Whh

∂L
∂Whh

∂L
∂Whh

∂L
∂Wxh

∂L
∂Wxh

∂L
∂Wxh

∂L
∂Wxh

∂L
∂Why

∂L
∂Why

= ∂L
∂y4

∂y4

∂Why
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Recurrent connections: Backprop through time
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∂y4
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∂h4

∂h4

∂Whh
+ ∂L

∂y4

∂y4

∂h4

∂h4

∂h3

∂h3

∂Whh
+ ∂L

∂y4

∂y4

∂h4

∂h4

∂h3

∂h3

∂h2

∂h2

∂Whh
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Recurrent connections: Backprop through time

x1 x2 x3 x4 · · ·

h1

Wxh

y1

Why

h2

Wxh
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y2
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Wxh
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y3
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h4

Wxh
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∂L
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∂h3

∂h3

∂Wxh
+ ∂L

∂y4

∂y4

∂h4

∂h4

∂h3

∂h3

∂h2

∂h2

∂Wxh
+

∂L
∂y4

∂y4

∂h4

∂h4

∂h3

∂h3

∂h2

∂h2

∂h1

∂h1

∂Wxh
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Activation functions
φh is typically a smooth, bounded function, e.g., σ, tanh

ht−1 httanh

xt

ht = tanh(Wxh xt +Whh ht−1)

− Susceptible to vanishing gradients
− Can fail to capture long-term dependencies
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Long short-term memory (LSTM) Gers et al (1999)
Learning to Forget: Continual Prediction with LSTM

ct−1

ct

xt

ht−1 tanh +

c̃t = tanh(Wxh xt +Whh ht−1)

ct = ct−1 + c̃t
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Long short-term memory (LSTM) Gers et al (1999)
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ct−1

ct
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forget
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Long short-term memory (LSTM) Gers et al (1999)
Learning to Forget: Continual Prediction with LSTM

ct−1

ct

xt

ht−1 tanh +

forget
×σ

input
×

σ

ft = σ(Wfx xt +Wfh ht−1)

it = σ(Wix xt +Wih ht−1)

c̃t = tanh(Wxh xt +Whh ht−1)

ct = ft � ct−1 + it � c̃t
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Long short-term memory (LSTM) Gers et al (1999)
Learning to Forget: Continual Prediction with LSTM

ct−1

ct

xt

ht−1 tanh +

forget
×σ

input
×

σ

output

tanh

×

ht

σ

ft = σ(Wfx xt +Wfh ht−1)

it = σ(Wix xt +Wih ht−1)

ot = σ(Wox xt +Woh ht−1)

c̃t = tanh(Wxh xt +Whh ht−1)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)
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Gated Recurrent Unit (GRU) Cho et al. (2014)
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

xt

ht−1

ht

tanh

h̃t = tanh(Wxh xt +Whh ht−1)

ht = h̃t
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Gated Recurrent Unit (GRU) Cho et al. (2014)
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

xt

ht−1

ht

tanh

reset

×

σ

rt = σ(Wrx xt +Wrh ht−1)

h̃t = tanh(Wxh xt +Whh (rt � ht−1))

ht = h̃t
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Gated Recurrent Unit (GRU) Cho et al. (2014)
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

xt

ht−1

ht

tanh

reset

×

σ

update

×

σ

rt = σ(Wrx xt +Wrh ht−1)

zt = σ(Wzx xt +Wzh ht−1)

h̃t = tanh(Wxh xt +Whh (rt � ht−1))

ht = zt � h̃t
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Gated Recurrent Unit (GRU) Cho et al. (2014)
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

xt

ht−1

ht

tanh

reset

×

σ

update

×

σ

1−

×

+

σ

rt = σ(Wrx xt +Wrh ht−1)

zt = σ(Wzx xt +Wzh ht−1)

h̃t = tanh(Wxh xt +Whh (rt � ht−1))

ht = (1− zt)� ht−1 + zt � h̃t
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NLP scenarios: Classification

Given variable-length text w1 · · ·wn (sentence, document, etc), find
label y

Normal discriminative approach:
· Extract features over the input text
· Train a linear classifier

Examples:
· Topic classification
· Sentiment analysis
· Entailment recognition

...
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Classification with RNNs

x1 x2 x3 xn

Wxh Wxh Wxh Wxh

Whh Whh

y
Why

(each xi is a sparse or dense representation of input word wi)
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Classification with deep RNNs

x1 x2 x3 xn

Wxh Wxh Wxh Wxh

Whh Whh

y
W ′

hh W ′
hh

Why

+ Can learn more abstract representations
− Slow computation because of recurrent dependencies
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Classification with bidirectional RNNs

x1 x2 x3 xn

Wxh Wxh Wxh Wxh

Whh Whh

y

Why

Uxh Uxh Uxh Uxh

Uhh Uhh

+ Less sensitive to vanishing gradients for long sequences
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Classification with CNNs Kim (2014)
Convolutional Neural Networks for Sentence Classification

· Max-over-time pooling
· Two input embedding “channels” — one updated during training
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Classification with Tree-RNNs Tai et al (2015)
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

x1 x2

x3x4 x5

y

Wxh
Wxh

Wxh

Wxh Wxh

Wxh

Why

Computation graph follows dependency or constituency parse
(i) Child-sum:

· Good for arbitrary fan-out or unordered children
· Suited to dependency trees (input xi is head word)

(ii) N -ary
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Classification with Tree-RNNs Tai et al (2015)
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

x1 x2 x3

y

Wxh Wxh Wxh

W l
hh W r

hh

W l
hh W r

hh

Why

Computation graph follows dependency or constituency parse
(i) Child-sum
(ii) N -ary:

· Fixed number of children, each parameterized separately
· Suited to binarized constituency parses (leaves take word inputs xi)



33

Classification with Tree-RNNs Socher et al (2013)
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
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NLP scenarios: Tagging

Given variable-length text w1 · · ·wn, label spans z1, . . . , zm

Normal discriminative approach:
· Distribute labels over input to produce per-word labels y1, . . . , yn

◦ BIO encoding: Beginning-z, Inside-z, Outside
◦ BILOU encoding: Beginning-z, Inside-z, Last-z, Outside, Unit-z

· Extract features over input words
· Train a linear-chain conditional random field

Examples:
· Part-of-speech tagging
· Chunking
· Named entity recognition
· Semantic role labeling

...
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Tagging with RNNs

x1 x2 x3 x4

Wxh Wxh Wxh Wxh

Whh Whh Whh

y1 y2 y3 y4

Why Why Why Why

+ Effective with BIO/BILOU label encodings
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Tagging with bidirectional RNNs

x1 x2 x3 x4

Wxh Wxh Wxh Wxh

Whh Whh Whh

y1 y2 y3 y4

Why Why Why Why

Uxh Uxh Uxh Uxh

Uhh Uhh Uhh

+ Effective with BIO/BILOU label encodings
+ Less sensitive to vanishing gradients for long sequences
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NLP scenarios: Generation

Probabilistic language modeling
- Distribution over sequences of words p(w1, . . . , wT ) in a language
- Typically made tractable via conditional independence assumptions

p(w1, . . . , wn) =

T∏
t=1

p(wt|wt−1, . . . wt−n)

- n-gram counts estimated from large corpora
- Distributions smoothed to tolerate data sparsity, e.g., Laplace
(add-one) smoothing, Kneser-Ney smoothing

- Evaluate on perplexity over held-out data

2
1
N

∑N
i=1 log2 p

(
w

(i)
1 ...w

(i)
Ti

)



37

NLP scenarios: Generation Bengio et al (2003)
A Neural Probabilistic Language Model

Discriminative language modeling
- Estimate n-gram probabilities with a discriminative model

p(wt|wt−1, . . . w1) ≈ f(w1, . . . , wt)

e.g., model p(wt|wt−1, . . . wt−n) with a feed-forward neural net
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Language modeling with auto-regressive RNNs

Whh Whh Whh

y1 y2 y3 y4

Why Why Why Why

Wxh Wxh Wxh

· Supply one-hot encoding of output yt as input to timestep t+ 1

· Curriculum learning to overcome model initialization and speed up
convergence
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RNNLM Mikolov et al (2010)
Recurrent Neural Network Based Language Model

Model p(wt|wt−1, . . . wt−n) with an RNN
Or an ensemble of multiple RNNs, randomly initialized

Results on Penn Treebank corpus
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RNNLM Mikolov et al (2010)
Recurrent Neural Network Based Language Model

Model p(wt|wt−1, . . . wt−n) with an RNN
Or an ensemble of multiple RNNs, randomly initialized

Comparison of single RNN vs RNN ensembles
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RNNLMs with character CNNs Jozefowicz et al (2015)
Exploring the Limits of Language Modeling

Recent models with character-CNN inputs and softmax alternatives
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RNNLMs with character CNNs Jozefowicz et al (2015)
Exploring the Limits of Language Modeling

Nearest neighbors in character-CNN embedding space
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Transfer learning with NNLMs
Pre-trained neural language models are useful in classification tasks

Performance gains with ELMo representations added to various models

Deep Contextualized Word Representations (Peters et al., 2018)

Universal Language Model Fine-tuning for Text Classification (Howard and Ruder,
2018)

Improving Language Understanding by Generative Pre-Training (Radford et al., 2018)
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NLP scenarios: Text-to-text

Given variable-length text x1 · · ·xn (sentence, document, etc),
produce output text y1, · · · , ym under some transformation

Traditional approaches:
· Pipelined models
· Constrained optimization

...

Examples:
· Machine translation
· Document summarization
· Sentence simplification
· Paraphrase generation

...
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Decoding with RNNs

Whh Whh

y1 y2 y3

Why Why Why

c

Input context c

Output words y1, . . . , ym
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Decoding with RNNs

Whh Whh

y1 y2 y3

Why Why Why

c

Wxh Wxh Wxh

Input context c

Output words y1, . . . , ym
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Encoding with RNNs

x1 x2 xn

Uxh Uxh Uxh

Uhh

Input words x1, . . . , xn

Output representation hn
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Sequence-to-sequence learning Sutskever, Vinyals & Le (2014)
Sequence to Sequence Learning with Neural Networks

Whh Whh

y1 y2 y3

Why Why Why

c

Wxh Wxh Wxh

x1 x2 xn

Uxh Uxh Uxh

Uhh

Input words x1, . . . , xn

Output words y1, . . . , ym
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Sequence-to-sequence learning Sutskever, Vinyals & Le (2014)
Sequence to Sequence Learning with Neural Networks

Produces a fixed length representation of input
- “sentence embedding” or “thought vector”
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Sequence-to-sequence learning Sutskever, Vinyals & Le (2014)
Sequence to Sequence Learning with Neural Networks

Produces a fixed length representation of input
- “sentence embedding” or “thought vector”
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Overview: processing text with RNNs

Inputs
· One-hot vectors for words/characters/previous output
· Embeddings for words/sentences/context

· CNN over characters/words/sentences
...

Recurrent layers
· Forward, backward, bidirectional, deep
· Activations: σ, tanh, gated (LSTM, GRU), ReLU initialized with identity

...

Outputs
· Softmax over words/characters/labels

· Absent (i.e., pure encoders)
...


