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Outline

• A brief history of automatic speech recognition

• Speech production model

• Fundamentals of automatic speech recognition

• Context-dependent deep neural networks
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Applications of Speech Technologies

• Speech recognition
• Speech synthesis
• Voice conversion
• Speech enhancement
• Speech coding
• Spoken term detection
• Speaker recognition/verification
• Speech-to-speech translation
• Dialogue systems
• ......
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Some ASR Terminology
• Speaker dependent (SD) vs. speaker independent (SI)
• Isolated word recognition vs. continuous speech recognition
• Large-vocabulary continuous speech recognition (LVCSR)

I naturally speaking style
I > 1000 words historically but way more nowadays (e.g. 30K -

50K, some may reach 100K)
• Speaker adaptation

I supervised
I unsupervised

• Speech input and channel
I close-talking microphone
I far-field microphone
I microphone array
I codec
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Four Generations of ASR
Roughly four generations:
• 1st generation (1950s-1960s):
Explorative work based on acoustic-phonetics

• 2nd generation (1960s-1970s):
ASR based on template matching

• 3rd generation (1970s-2000s):
ASR based on rigorous statistical modeling

• 4th generation (late 2000s-present):
ASR based on deep learning

*adapted from S. Furui, “History and development of Speech Recognition."
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1st Generation: Early Attempts (1)

K. H. Davis, R. Biddulph, and S. Balashek, “Automatic Recognition of Spoken Digits," J. Acoust. Soc. Am., vol
24, no. 6, pp. 627-642, 1952.
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1st Generation: Early Attempts (2)

K. H. Davis, R. Biddulph, and S. Balashek, “Automatic Recognition of Spoken Digits," J. Acoust. Soc. Am., vol
24, no. 6, pp. 627-642, 1952.
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2nd Generation: Template Matching
• Linear predictive coding (LPC)

I formulated independently by Atal and Itakura
I an effective way for estimation of vocal tract response

• Dynamic programming
I widely known as dynamic time warping (DTW) in speech

community
I deal with non-uniformity of two patterns
I first proposed by Vintsyuk from former Soviet Union which was

not known to western countries until 1980s.
I Sakoe and Chiba from Japan independently proposed it in late

1970s.

• Isolated-word or connected-word recognition based on DTW
and LPC (and its variants) under appropriate distance
measure.
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An example illustrating DTW

re ference

 pa ttern

test pa ttern
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3rd Generation: Hidden Markov Models
• Switched from template-based approaches to rigorous statistical modeling
• Path of HMMs becoming the dominant approach in ASR

I Earliest research dated back to late 1960s by L. E. Baum and his colleagues
at Institute for Defense Analyses (IDA)

I James Baker followed it up at CMU when he was a Ph.D in 1970s
I James and Janet Baker joined IBM and worked with Fred Jelinek on using

HMMs for speech recognition in 1970s
I Workshop on HMMs was held by IDA in 1980 which resulted in a so-called

"The Blue Book" with the title "Applications of Hidden Markov Models to
Text and Speech". But the book was never widely distributed.

I A series of papers on the HMM methodology was published after the IDA
workshop in the next few years including the well-known IEEE proceedings
paper "A tutorial on hidden Markov models and selected applications in
speech recognition" in 1989.

I HMMs have since become the dominant approach for speech recognition.
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A Unified Speech Recognition Model

P (W |X) = P (X|W )P (W )
P (X)

X = {x1, x2, · · · , xm} is a sequence of speech features

W = {w1, w2, · · · , wn} is a sequence of words

P (W ) = P (w1, w2, · · · , wn) gives the probability of the sequence
of the words – referred to as language model (LM)

P (X|W ) = P (x1, x2, · · · , xm|w1, w2, · · · , wn) gives the
probability of the sequence of speech features given the word
sequence – referred to as acoustic model (AM)
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An Illustrative Example of HMMs

SIL SIL-HH+AW HH-AW+AA AW-AA+R AA-R+Y R-Y+UW Y-UW+SIL SIL

“How are  you”

HH AW AA R Y UWSIL SIL

AW-AA+R
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Two LVCSR Developments at IBM and Bell Labs
• IBM

I focused on dictation systems
I interested in seeking a probabilistic structure of the language

model with a large vocabulary
I n-grams

P (W ) = P (w1w2 · · ·wn)
= P (w1)P (w2|w1)P (w3|w1w2) · · ·P (wn|w1w2 · · ·wn−1)
= P (w1)P (w2|w1)P (w3|w2) · · ·P (wn|wn−1)

• Bell Labs
I focused on voice dialing and command and control for call routing
I interested in speaker independent systems that could handle

acoustic variability from a large number of different speakers
I Gaussian mixture models (GMMs) for state observation distribution

P (x|s) =
∑

i

ci N (x;µi,Σi)
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3rd Generation: Further Improvements
• GMM-HMM acoustic model with n-gram language model
have become the "standard" LVCSR recipe.
• Significant improvements in 1990s and 2000s.

I Speaker adaptation/normalization
I vocal tract length normalization (VTLN)
I maximum likelihood linear regression (MLLR)
I speaker adaptive training (SAT)

I Noise robustness
I parallel model combination (PMC)
I vector Taylor series (VTS)

I Discriminative training
I minimum classification error (MCE)
I maximum mutual information (MMI)
I minimum phone error (MPE)
I large margin

I · · · · · ·
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Progresses Made Before the Advent of Deep Learning

*X. Huang, J. Baker and R. Reddy, “A historical perspective of speech recognition."
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4th Generation: Deep Learning

• G. E. Hinton, S. Osindero and Y.-W. Teh, "A Fast Learning
Algorithm for Deep Belief Nets," Neural Computation, 18, pp
1527-1554, 2006.
I the ground-breaking paper on deep learning.
I layer-wise pre-training in an unsupervised fashion
I fine-tune afterwards with supervised training

• Changed people’s mindset that deep neural networks are not
good and can never be trained
• Microsoft, Goolge and IBM around 2011 and 2012 all reported
significant improvements over their then state-of-the-art
GMM-HMM-based ASR systems.
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4th Generation: Deep Learning

• Deep acoustic modeling
I deep feedforward neural networks (DNN, CNN, · · · )
I deep recurrent neural networks (LSTM, GRU, · · · )
I end-to-end neural networks

• Deep language modeling
I deep feedforward neural networks (DNN, CNN)
I deep recurrent neural networks (RNNs, LSTM · · · )
I word embedding
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DNN-HMM vs. GMM-HMM

*G. Hinton et. al., “Deep neural networks for acoustic modeling in speech recognition – the shared views of four
research groups."
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Impact of Deep Learning on SWB2000

Switchboard database
• a popular public benchmark in speech recognition community
• human-human landline telephone conversations on directed topics
• 300 hours/ 2000 hour
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Progresses Made at IBM on SWB2000

*estimate of human performance: 5.1%
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Achieving "Human Parity" in ASR
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Speech Production Model

*from internet
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Speech Production Model

*L. Rabiner and B.-H. Juang, "Fundamentals of speech recognition".
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Speech Production Model

impulse
train

white 
noise

vocal tract

G

speech signal

voiced sounds

unvoiced sounds

time domain: st = e(t) ∗ v(t)

frequency domain: S(ω) = E(ω)V (ω)
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Speech Production Model

*J. Picone, "Fundamentals of speech recognition: a short course".
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Speech Production Model

*J. Picone, "Fundamentals of speech recognition: a short course".
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An example of speech spectra

• /uw/ sound from an adult male and a boy
• pitch
• vocal tract
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Waveforms and Spectrograms
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Wideband and Narrowband Spectrograms

"deep learning" -- wideband spectrogram
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A Quick Walkthrough of GMM-HMM Based Speech
Recognition

feature 

extraction

decoding

network

acoustic 

model

language

model

dictionary

speech 

input
text

output

• training
• decoding

EECS 6894, Columbia University 30/50



Deep Learning for Computer Vision, Speech, and Language

Feature Extraction

• Frame window length ∼20ms with a shift of ∼10ms
• Commonly used hand-crafted features

I Linear Predictive Cepstral Coefficients (LPCCs)
I Mel-frequency Cepstral Coefficients (MFCCs)
I Perceptual Linear Predictive (PLP) analysis
I Mel-frequency Filter banks (FBanks) (widely used in

DNNs/CNNs)
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Cepstral Analysis
Why cepstral analysis? deconvolution!

windowing DFT log|   | IDFT liftering

|S(ω)| = |E(ω)| · |V (ω)|
log |S(ω)| = log |E(ω)|+ log |V (ω)|

c(n) = IDFT(log |S(ω)|) = IDFT(log |E(ω)|+ log |V (ω)|)

• cepstrum, quefrency and liftering
• vocal tract components are represented by the slowly varying
components concentrated at lower quefrency
• excitation components are represented by the fast varying
components concentrated at the higher quefrency
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Mel-Frequency Filter Bank and MFCC

DFT MEL Log DCT MFCC
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Acoustic Units and Dictionary
• Dictionary

HOW HH AW
ARE AA R
YOU Y UW
· · · · · ·
• Context-Independent (CI) phonemes

HH AW AA R Y UW · · ·
• Context-dependent (CD) phonemes

I coarticulation
I phonemes are different if they have different left and right contexts

Pl − Pc + Pr

I e.g. HH-AW+AA, P-AW+AA, HH-AW+B are different CD phonemes
I each CD phoneme is model by an HMM.

• Other acoustic units
I syllables, words, · · ·
I a tradeoff between modeling accuracy and data coverage
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Context-Dependent Phonemes
• Advantages:

– modeling subtle acoustic characteristics given the acoustic contexts
• Disadvantages:

– giving rise to a substantial number of CD phonemes
– e.g. 453 = 91125, 455 ≈ 1.8× 108

• Solution:
– parameter tying (vowels, stops, fricatives, nasals...)
– widely used for targets of DNN/CNN systems

*after HTK.
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GMM-HMM: Mathematical Formulation

λ = {A,B,π}
• State transition probability A: aij = P (st+1 = j|st = i)
• State observation PDF B: bi(ot) = p(ot|st = i)
• Initial state distribution π: πi = P (s1 = i)

HMM is an extension of Markov chain
• a doubly embedded stochastic process
• an underlying stochastic process which is not directly observable
• another observable stochastic process generated from the hidden stochastic

process
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GMM-HMM: Mathematical Formulation

SIL SIL-HH+AW HH-AW+AA AW-AA+R AA-R+Y R-Y+UW Y-UW+SIL SIL

“How are  you”

HH AW AA R Y UWSIL SIL

Three fundamental problems for HMMs
• Given the observed sequence O = {o1, · · · oT} and a model λ = {A,B,π},

how to evaluate the probability of the observation sequence
P (O|λ) =

∑
S P (O,S|λ)?

• How do we adjust the model parameters λ = {A,B,π} to maximize P (O|λ)?
• Given the observed sequence O = {o1, · · · oT} and the model λ = {A,B,π},

how to choose the most likely state sequence S = {s1, · · · sT}?
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GMM-HMM: Acoustic Model Training
How to compute the feature sequence likelihood given the acoustic model?
The forward-backward algorithm
• Forward Computation: αt(i) = P (o1 · · · ot, st = i|λ)

I Initialization
α1(i) = πibi(o1), 1 ≤ i ≤M

I Induction

αt+1(j) =
M∑

i=1
αt(i)aijbj(ot+1), 1 ≤ j ≤M, 1 ≤ t ≤ T − 1

I Termination

P (O|λ) =
M∑

i=1
αT (i)

• Backward Computation: βt(i) = P (ot+1 · · · oT|st = i, λ)
I Initialization

βT (i) = 1, 1 ≤ i ≤M
I Induction

βt(i) =
M∑

i=1
aijbj(ot+1)βt+1(j), 1 ≤ j ≤M, T − 1 ≥ t ≥ 1

• Using both forward and backward variables: P (O|λ) =
∑M
i=1 αt(i)βt(i)
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GMM-HMM: Acoustic Model Training
How to estimate model parameters λ given the data?
• Given the feature sequence O = {o1, · · · oT}

λ∗ = argmax
λ

P (O|λ)

where GMM is used for B:

P (x|s) =
∑
i

ci N (x;µi,Σi)

• the Expectation-Maximization (EM) algorithm (also known as Baum-Welch
algorithm)

cik =
∑
t γik(t)∑
t γi(t)

µik =
∑
t γik(t)ot∑
t γik(t)

, Σik =
∑
t γik(t)(ot − µik)(ot − µik)T∑

t γik(t)

where

γt(i) = P (st = i|O, λ) = αt(i)βt(i)∑M
i=1 αt(i)βt(i)

γik(t) = P (st = i, ζt = k|O, λ) = αt(i)aijbj(ot+1)βt+1(j)∑M
i=1

∑M
j=1 αt(i)aijbj(ot+1)βt+1(j)
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GMM-HMM: Language Model Training

• n-gram:
I Approximate the conditional probability with n history words

P (w1, w2, · · · , wm) ≈
m∏

i=1
P (wi|wi−n+1, · · · , wi−1)

I Counting events on context using training data

P (wi|wi−n+1, · · · , wi−1) = C(wi−n+1, · · · , wi−1, wi)
C(wi−n+1, · · · , wi−1)

• unigram, bigram, trigram, 4-grams, · · ·
• data sparsity issue
• back-off strategy and interpolation
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GMM-HMM: Decoding

• How to find the path of a feature sequence that gives the maximum likelihood
given the model?
I dynamic programming (Viterbi decoding)
I let φj(t) represent the maximum likelihood of observing partial sequence from o1

to ot and being in state j at time t

φj(t) = max
s1,s2,···st−1

P (s1, s2, · · · st−1, st = j, o1, o2, · · · ot|λ)

by induction,

φj(t) = max
i
{φi(t− 1)aij}bj(ot)

*after HTK.
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GMM-HMM: Decoding

S
sil how

are 
you

E

is

it

your

car

sil

• Inject language model
• Inject dictionary
• Inject CD-HMMs with each CD-HMM state having a GMM distribution
• Compute (log-)likelihood of each feature vector in each CD-HMM state

P (x|s) =
∑
i

ci N (x;µi,Σi)
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GMM-HMM: Decoding
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GMM-HMM: Forced Alignment

SIL SIL-HH+AW HH-AW+AA AW-AA+R AA-R+Y R-Y+UW Y-UW+SIL SIL

“How are  you”

• Given the text label, how to find the best underlying state
sequence?
I same as decoding except the label is known
I Viterbi algorithm (again)

• Often referred to as Viterbi alignments in speech community
• Widely used in deep learning ASR to generate the target
labels for the training data
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Context-Dependent DNNs
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Context-Dependent DNNs
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p(s) ∝ p(s|o)

p(s)
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Two Families of DNN-HMM Acoustic Modeling

• Hybrid systems
I directly connected to HMMs for acoustic modeling

• Bottleneck tandem systems
I used as feature extractors
I bottleneck features extracted can be used to train

GMM-HMMs or DNN-HMMs
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Modeling with Hidden Variables
• Hidden variables (or latent variables) are crucial in acoustic
modeling (also true for computer vision and NLP)
I hidden state or phone sequence in acoustic modeling
I hidden speaker transformation in speaker adaptation
I latent topic and word distribution in Latent Dirichlet allocation

in NLP
• It reflects your belief how a system works (internal working
mechanism)
• Deep neural networks

I using a large number of hidden variables
I hidden variables are organized in a hierarchical fashion
I usually lack of straightforward interpretation (the well-known

interpretability issue)
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DNN-HMMs: An Typical Training Recipe
• Preparation

I 40-dim FBank features with ±4 adjacent frames (input dim = 40x9)
I use an existing model to generate alignments which are then converted to 1-hot

targets from each frame
I create training and validation data sets
I estimate priors p(s) of CD states

• Training
I set DNN configuration (multiple hidden layers, softmax output layers and

cross-entropy loss function)
I initialization
I optimization based on back-prop using SGD on the training set while monitoring

loss on the validation set
• Test

I push input features from test utterances through the DNN acoustic model to get
their posteriors

I convert posteriors to likelihoods
I Viterbi decoding on the decoding network
I measure the word error rate
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Training A Hybrid DNN-HMM System

feature 
extraction

CD-phone
generation

GMM-HMM

CD-phones
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features
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DNN-HMM
HMM 
Viterbi 

Decoding
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Attila/Kaldi
Theano/Torch/

Tensorflow
Attila/Kaldi
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