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Deep Learning for Computer Vision, Speech, and Language

Outline

® A brief history of automatic speech recognition
® Speech production model
® Fundamentals of automatic speech recognition

® Context-dependent deep neural networks
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Applications of Speech Technologies

® Speech recognition

® Speech synthesis

® \oice conversion

® Speech enhancement

® Speech coding

® Spoken term detection

® Speaker recognition/verification
® Speech-to-speech translation

® Dialogue systems
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Some ASR Terminology

® Speaker dependent (SD) vs. speaker independent (SI)
® |solated word recognition vs. continuous speech recognition
® Large-vocabulary continuous speech recognition (LVCSR)
» naturally speaking style
> > 1000 words historically but way more nowadays (e.g. 30K -
50K, some may reach 100K)
® Speaker adaptation
» supervised
» unsupervised
[ )

Speech input and channel
» close-talking microphone
» far-field microphone
» microphone array
» codec

EECS 6894, Columbia University 4/50



Deep Learning for Computer Vision, Speech, and Language

Four Generations of ASR

Roughly four generations:

¢ 1st generation (1950s-1960s):
Explorative work based on acoustic-phonetics

¢ 2nd generation (1960s-1970s):
ASR based on template matching

® 3rd generation (1970s-2000s):
ASR based on rigorous statistical modeling

¢ 4th generation (late 2000s-present):
ASR based on deep learning

*adapted from S. Furui, “History and development of Speech Recognition."
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1st Generation: Early Attempts (1)

DIGIT1 DIGIT 2 DIGIT3 DIGIT4 DIGIT§

3.0~ 0= 0+ 304 30-

2.5+ 2.5+ 251

15 T 15 [ .

10 ":‘ 10 1.0 “.“’
T I T T I T T T T
02 04 08 08 02 04 06 08 02 04 06 08
DIGIT8 DIGIT® DIGIT ‘'OH’

30 10 30

20 f') 204

15 ";5 15 1.5+

1.0 g 0 1.0 .':’
T T T T T T
02 04 05 08 02 04 05 08 02 04 06 08

K. H. Davis, R. Biddulph, and S. Balashek, “Automatic Recognition of Spoken Digits," J. Acoust. Soc. Am., vol
24, no. 6, pp. 627-642, 1952.
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1st Generation: Early Attempts (2)
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K. H. Davis, R. Biddulph, and S. Balashek, “Automatic Recognition of Spoken Digits," J. Acoust. Soc. Am., vol
24, no. 6, pp. 627-642, 1952.
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2nd Generation: Template Matching
® Linear predictive coding (LPC)
» formulated independently by Atal and ltakura
» an effective way for estimation of vocal tract response
® Dynamic programming

> widely known as dynamic time warping (DTW) in speech
community

» deal with non-uniformity of two patterns

» first proposed by Vintsyuk from former Soviet Union which was
not known to western countries until 1980s.

» Sakoe and Chiba from Japan independently proposed it in late
1970s.

® |solated-word or connected-word recognition based on DTW

and LPC (and its variants) under appropriate distance
measure.
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An example illustrating DTW

reference
pattern

test pattern
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3rd Generation: Hidden Markov Models

e Switched from template-based approaches to rigorous statistical modeling
® Path of HMMs becoming the dominant approach in ASR

>

>
>

Earliest research dated back to late 1960s by L. E. Baum and his colleagues
at Institute for Defense Analyses (IDA)

James Baker followed it up at CMU when he was a Ph.D in 1970s

James and Janet Baker joined IBM and worked with Fred Jelinek on using
HMMs for speech recognition in 1970s

Workshop on HMMs was held by IDA in 1980 which resulted in a so-called
"The Blue Book" with the title "Applications of Hidden Markov Models to
Text and Speech". But the book was never widely distributed.

A series of papers on the HMM methodology was published after the IDA
workshop in the next few years including the well-known IEEE proceedings
paper "A tutorial on hidden Markov models and selected applications in
speech recognition" in 1989.

HMMs have since become the dominant approach for speech recognition.
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A Unified Speech Recognition Model

PX|W)P(W)
PW|X)= 200

X ={x1,x9, -+ ,x;,m} is a sequence of speech features
W = {wy,wq, - ,w,} is a sequence of words

P(W) = P(wy,wa,--- ,w,) gives the probability of the sequence
of the words — referred to as language model (LM)

P(X|W) = P(x1,x2,+ ,Tm|w1,wa, -+ ,wy) gives the
probability of the sequence of speech features given the word
sequence — referred to as acoustic model (AM)
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An lllustrative Example of HMMs

1 I 1
SIL SIL-HH+AW HH-AW+AA ! AW-AA+R AA-R+Y R-Y+UW ! Y-UW4+SIL ! SIL
SIL HH AW AA R Y uw SIL
“How are you”
AW-AA+R
/, 1 \\ AR

ZARN NN
NN

/ !' .
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Two LVCSR Developments at IBM and Bell Labs
* IBM

» focused on dictation systems

> interested in seeking a probabilistic structure of the language
model with a large vocabulary

> n-grams

P(W) = P(uhws - - wy,)

= P(w1)P(wz|wr)P(ws|wiws) - - - P(wp|wrws -+ wp_1)
= P(w1)P(wa|w) P(ws|ws) - - - P(wn|wn_1)

® Bell Labs
> focused on voice dialing and command and control for call routing
P interested in speaker independent systems that could handle
acoustic variability from a large number of different speakers
» Gaussian mixture models (GMMs) for state observation distribution

P(z|s) = Zci N (5 5, 34)

i
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3rd Generation: Further Improvements

¢ GMM-HMM acoustic model with n-gram language model
have become the "standard" LVCSR recipe.
® Significant improvements in 1990s and 2000s.
> Speaker adaptation/normalization
> vocal tract length normalization (VTLN)
» maximum likelihood linear regression (MLLR)
> speaker adaptive training (SAT)
> Noise robustness
» parallel model combination (PMC)
> vector Taylor series (VTS)
» Discriminative training
» minimum classification error (MCE)
> maximum mutual information (MMI)
» minimum phone error (MPE)
> large margin
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Progresses Made Before the Advent of Deep Learning
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*X. Huang, J. Baker and R. Reddy, “A historical perspective of speech recognition."
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4th Generation: Deep Learning

e G. E. Hinton, S. Osindero and Y.-W. Teh, "A Fast Learning

Algorithm for Deep Belief Nets," Neural Computation, 18, pp
1527-1554, 2006.

» the ground-breaking paper on deep learning.
P layer-wise pre-training in an unsupervised fashion

P fine-tune afterwards with supervised training

® Changed people’s mindset that deep neural networks are not
good and can never be trained

® Microsoft, Goolge and IBM around 2011 and 2012 all reported
significant improvements over their then state-of-the-art
GMM-HMM-based ASR systems.
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4th Generation: Deep Learning

® Deep acoustic modeling
> deep feedforward neural networks (DNN, CNN, ---)

» deep recurrent neural networks (LSTM, GRU, ---)

» end-to-end neural networks

® Deep language modeling
> deep feedforward neural networks (DNN, CNN)

> deep recurrent neural networks (RNNs, LSTM - -.)
» word embedding
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DNN-HMM vs. GMM-HMM

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

TASK

SWITCHBOARD (TEST SET 1)
SWITCHBOARD (TEST SET 2)
ENGLISH BROADCAST NEWS

BING VOICE SEARCH
(SENTENCE ERROR RATES)

GOOGLE VOICE INPUT
YOUTUBE

HOURS OF

TRAINING DATA DNN-HMM
309 18.5

309 16.1

50 175

24 304

5,870 123

1,400 47.6

GMM-HMM GMM-HMM

WITH SAME DATA WITH MORE DATA
274 18.6 (2,000 H)

236 17.1 (2,000 H)

18.8

36.2

16.0 (>> 5,870 H)
52.3

*G. Hinton et. al., “Deep neural networks for acoustic modeling in speech recognition — the shared views of four

research groups."
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Impact of Deep Learning on SWB2000

Switchboard database
® a popular public benchmark in speech recognition community

® human-human landline telephone conversations on directed topics

® 300 hours/ 2000 hour

80 Improved
Adaptation
==WER
Improved
HMM
Training
Impact of
Deep
Learning

5 T T T T l
1990 1995 2000 2005 2010 2015 2020
Year

3

Word Error Rate
n
o

o
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Progresses Made at IBM on SWB2000

Word Error Described in IBM
Rate Publication

1.CNN 10.4 2013
2.RNN 9.9 2014, 2015
3. VGG 94 2016
4. RNN+VGG+LSTM 86 2016
5. (4) +More Ngramst+ModelM 7.0 2009, 2016
6. (4) +More Ngrams+ModelM+NNLM 6.6 2007,2009, 2016
7. Adversarial Learning + Resnet + LSTM 6.7 2017
8. (7) + (6) + LSTM LMs + Wavenet LM 55 2017

*estimate of human performance: 5.1%
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Achieving ""Human Parity" in ASR

a s
IBM Watson announces breakthrough in Conversational Speech ‘ WER = 8.0, 05/2015
Transcription

=M aa=

Recent Advances in Conversational Speech Recognition ) Wer-6.9, 04/2016

Microsoft's newest milestone? World's
lowest error rate in speech recognition

am sgnfcant st resuit n the quss for mchines o under

- WER=6.3, 09/2016
WER = 5.9, 10/2016

IBM vs Microsoft: 'Human parity’ speech ‘
recognition record changes hands again

WER=5.5, 03/2017

LANGUAGE MODELING WITH HIGHWAY LSTM

Gakuto Kurata®, Bhuvana Ramabhadrar®, George Saon, Abhinav Sethy? 3 WER=5.1, 09/2017
1BM Research Al
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Speech Production Model

Hard palate

Alveolar
ridge

Soft palate

Air from lungs

*from internet

Vocal folds

Closed
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Speech Production Model

Velum /
Nasal ==
: |
cavity =

Pharynx
Y Mouth é
cavity g

) Vocal Cords

*L. Rabiner and B.-H. Juang, "Fundamentals of speech recognition".
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Speech Production Model

QI

impqlse [ \_/ iz
train ]I H:

voiced sounds

vocal tract ——— speech signal

unvoiced sounds

wh_ite i :/t , i
noise

time domain: s

¢
frequency domain:  S(w) = E(w)V(w)
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Speech Production Model
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*J. Picone, "Fundamentals of speech recognition: a short course".

EECS 6894, Columbia University 25/50



Deep Learning for Computer Vision, Speech, and Language

Speech Production Model
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*J. Picone, "Fundamentals of speech recognition: a short course".
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An example of speech spectra

log magitude
log magnitude

(] 500 1000 1500 2000 200 3000 3500 4000 (] 500 1000 1500 200 2500 3000 3500 4000
requency trequency

¢ /uw/ sound from an adult male and a boy
® pitch
® vocal tract
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Waveforms and Spectrograms

]
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Wideband and Narrowband Spectrograms

- “doep learning’ - wideband spectrogram “doep learning’ - narrowband spectrogram

000

———
E—
— =
- _ —
-
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A Quick Walkthrough of GMM-HMM Based Speech

Recognition
speech feature decoding
input extraction network
Tt
acoustic language
model model
A A
dictionary
® training
® decoding

EECS 6894, Columbia University
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output
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Feature Extraction

| |
i i

® Frame window length ~20ms with a shift of ~10ms
e Commonly used hand-crafted features

» Linear Predictive Cepstral Coefficients (LPCCs)

» Mel-frequency Cepstral Coefficients (MFCCs)

» Perceptual Linear Predictive (PLP) analysis

> Mel-frequency Filter banks (FBanks) (widely used in
DNNs/CNNs)
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Cepstral Analysis

Why cepstral analysis? deconvolution!

—> windowing DFT

v

log| - |

IDFT

liftering

—>

[S(@) = [E(W)]- [V(w)]
log[S(w)[ = log | E(w)[ + log [V (w)]
c(n) = IDFT(log|S(w)|) = IDFT (log | E(w)| + log |V (w)|)

® cepstrum, quefrency and liftering

® vocal tract components are represented by the slowly varying

components concentrated at lower quefrency

® excitation components are represented by the fast varying

components concentrated at the higher quefrency

EECS 6894, Columbia University

32/50



Deep Learning for Computer Vision, Speech, and Language

Mel-Frequency Filter Bank and MFCC

— DFT = MEL = Log = DCT —» MFCC
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Acoustic Units and Dictionary

® Dictionary
HOW  HH AW
ARE AA R
YOU Y UW

Context-Independent (Cl) phonemes
HH AW AA R Y UW

e Context-dependent (CD) phonemes
> coarticulation
» phonemes are different if they have different left and right contexts
Pl - Pc + P’r
> e.g. HH-AW+AA, P-AW+AA, HH-AW-+B are different CD phonemes
» each CD phoneme is model by an HMM.
Other acoustic units

» syllables, words, - - -
» a tradeoff between modeling accuracy and data coverage
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Context-Dependent Phonemes

® Advantages:

— modeling subtle acoustic characteristics given the acoustic contexts
® Disadvantages:

— giving rise to a substantial number of CD phonemes

- e.g. 453 = 91125, 45° ~ 1.8 x 108
® Solution:

— parameter tying (vowels, stops, fricatives, nasals...)

— widely used for targets of DNN/CNN systems

tihen tiheng fih+l s-ihl

paaanssanaanuean

WA AL [AIAJA] - [ATATA

*after HTK.
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GMM-HMM: Mathematical Formulation

O 9,
OO
NG 888
(=)
O
A={A,B,x}
e State transition probability A:  a;; = P(si41 = j|s¢ = i)
e State observation PDF B: bi(or) = plot|st = 1)
e [nitial state distribution 7: m = P(s1 =1)

HMM is an extension of Markov chain
® a doubly embedded stochastic process
® an underlying stochastic process which is not directly observable
® another observable stochastic process generated from the hidden stochastic
process
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GMM-HMM: Mathematical Formulation

SIL | SIL-HH+AW

HH-AW+AA AW-AA+R Y-UWSIL 1 SIL
sIiL HH AW AA R Y uw sIL

“How are you”

Three fundamental problems for HMMs

® Given the observed sequence O = {o1,--- 0} and a model A = {A,B, 7},
how to evaluate the probability of the observation sequence
P(O|X) = > g P(O,S|\)?

® How do we adjust the model parameters A = {A, B, 7} to maximize P(O|\)?

® Given the observed sequence O = {01, --or} and the model A = {A B, w},
how to choose the most likely state sequence S = {s1,---sr}?
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GMM-HMM: Acoustic Model Training

How to compute the feature sequence likelihood given the acoustic model?
The forward-backward algorithm

® Forward Computation: oy (i) = P(o1 - 04, 8¢ = i|\)

> Initialization
(i) = m;bi(0y), 1<i<M

» Induction
arg1(j Zmzamo,ﬂ), 1<j<M, 1<t<T-1

» Termination
P(O|N) = Z ar(i

® Backward Computation:  f3;(i) = P(0g41---0r|ss = i, A)
> Initialization
Br(i)=1, 1<i<M
» Induction

M
Bi(i) = aijbi(04)Bera (), 1<j<M, T-1>t>1
i=1

e Using both forward and backward variables:  P(O[A) = XM, oy (i) B:(i)
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GMM-HMM: Acoustic Model Training

How to estimate model parameters A given the data?

® Given the feature sequence O = {0y, 0or}
A* = argmax P(O|\)
A
where GMM s used for B:

§) =i N(ws i, Xi)

e the Expectation-Maximization (EM) algorithm (also known as Baum-Welch

algorithm)
ik = evinlt)
TN
ik = 2 vin(t)or Sy = Sk (t) (0 = prar) (0 — paw)”
’ Sevin(t) > vik(t)
where

i (i)B4(i)
s ae(i)Bi(i)

= Pl ¥10. A a (i)a,jbj(0t+1)31+l<j)
7i(t) = Ploe =1, = O ) = S o Gty (o) B ()

V(i) = P(s, = |0, \) =
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GMM-HMM: Language Model Training
® n-gram:
> Approximate the conditional probability with n history words

m

Pwy,wa, -+, wp) = HP(wi|wifn+1a"' s Wi—1)
i=1

» Counting events on context using training data

C(Wimnt1,- -+ Wi—1,W;)

C(Wi—nt1, -+ ,Wi—1)

P(w;|wi—pq1,- -+ ,wi—1) =

® unigram, bigram, trigram, 4-grams, - - -
® data sparsity issue
® back-off strategy and interpolation
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GMM-HMM: Decoding

® How to find the path of a feature sequence that gives the maximum likelihood
given the model?
» dynamic programming (Viterbi decoding)
> let ¢;(t) represent the maximum likelihood of observing partial sequence from o,
to o; and being in state j at time t

¢j(t) = max  P(sy,82, - 8i—1,8 = J, 01,02, - 0| \)
81,582,511

by induction,
@5(t) = max{gi(t — 1)ai;}b;(or)

*after HTK.
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GMM-HMM: Decoding

Inject language model

Inject dictionary

Inject CD-HMMs with each CD-HMM state having a GMM distribution
Compute (log-)likelihood of each feature vector in each CD-HMM state

Plals) =3 ci N (w3 iy i)
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GMM-HMM: Decoding

Plare|how)

IS
n
1

P(carlyour)

i
P(islhow)

l

AA-B-3
SIL-E-7
SIL-E-8
SIL-E-9

E

AA-B1
AA-B-2
AA-M-1
AA-M-2
AA-M-3
AA-M-4

I
=
RIRRRRARRARRIRRIRR NN
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GMM-HMM: Forced Alighment

\ ' / i | VAN
TSNS\ T /AN TN
SIL SIL-HH+AW HH-AW+AA AW-AA+R AA-R+Y R-Y+UW Y-UW+SIL SIL
“How are you”
® Given the text label, how to find the best underlying state
sequence?
» same as decoding except the label is known
> Viterbi algorithm (again)
e Often referred to as Viterbi alignments in speech community
® Widely used in deep learning ASR to generate the target
labels for the training data
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Context-Dependent DNNs
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Two Families of DNN-HMM Acoustic Modeling

® Hybrid systems

» directly connected to HMMs for acoustic modeling
® Bottleneck tandem systems

P> used as feature extractors

P> bottleneck features extracted can be used to train
GMM-HMMs or DNN-HMMs

EECS 6894, Columbia University
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Modeling with Hidden Variables

® Hidden variables (or latent variables) are crucial in acoustic
modeling (also true for computer vision and NLP)

» hidden state or phone sequence in acoustic modeling

» hidden speaker transformation in speaker adaptation

» |atent topic and word distribution in Latent Dirichlet allocation
in NLP

® |t reflects your belief how a system works (internal working
mechanism)

® Deep neural networks
» using a large number of hidden variables
» hidden variables are organized in a hierarchical fashion
> usually lack of straightforward interpretation (the well-known
interpretability issue)
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DNN-HMMs: An Typical Training Recipe

® Preparation
> 40-dim FBank features with 4 adjacent frames (input dim = 40x9)
P use an existing model to generate alignments which are then converted to 1-hot
targets from each frame
» create training and validation data sets
> estimate priors p(s) of CD states
® Training
> set DNN configuration (multiple hidden layers, softmax output layers and
cross-entropy loss function)
> initialization
> optimization based on back-prop using SGD on the training set while monitoring
loss on the validation set

» push input features from test utterances through the DNN acoustic model to get
their posteriors

» convert posteriors to likelihoods

> Viterbi decoding on the decoding network

» measure the word error rate
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Training A Hybrid DNN-HMM System

Attila/Kaldi ULEILAL Attila/Kaldi
Tensorflow
feature CD-phones
extraction (classes)
posteriors HMM.
> GMM-HMM | alignments | DNN-HMM »  Viterbi
CD-phone (labels) Decoding
generation
features
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