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Convolutional Neural Networks
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https://columbia6894.github.io/
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Outline

• Discussing conv. filters from traditional viewpoints

• The first popular deep CNN: LeNet in 1998

• The second popular deep CNN: AlexNet in 2012

• Why 14 years? Challenges of  implementing AlexNet?

• Improving CNNs
– 1x1 convolution                       - Residual network



Convolutional	Filters
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• Image filtering are usually represented by the convolution 
between an image and a mask. 
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Image	Filters

• Image filtering are usually represented by the convolution 
between an image and a mask. 

Edge detection

Blurring

Sharpen



Discussions
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• Filters are powerful for many vision applications

We can use filters for recognition, enhancement…

That is why nowadays CNNs almost dominate all 
vision applications



Discussions

6

• Filters are powerful for many vision applications

• Convolutions are expensive
– At every pixel we need do multi-multiplication with its 

neighborhood values
– Algorithms of  speedup*: integral image, separable filters, time 

domain convolution -> frequency multiplication, etc
– Hardware of  speedup: GPU, TPU

*This suggests a number of  research ideas of  improving deep cnn



Discussions
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• Filters are powerful for many vision applications

• Convolutions are expensive

• How many filters can we learn?
– Dozens? Hundreds? Millions? More?
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Huge	Amount	of	Filters:	An	Example

[Viola and Jones]: face detection via millions* of  simple filters

Haar Wavelet Haar like features
Given two adjacent 
rectangular regions, 
sums up the pixel 
intensities in each 
region and calculates 
the difference between 
the two sums

Efficient computation

*This suggests to find ways to train numerous filters…



Discussions
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• Filters are powerful for many vision applications

• Convolutions are expensive

• How many filters can we learn?

• How to manage larger neighborhood?
– Sub-sample the image
– Larger receptive fields (i.e., filter size)
– Stack multi convolutional layers together -> deep CNNs



Let’s	Go	to	Multi-Layer	CNNs	
(deep	CNNs)!
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The	First	Popular	Deep	CNN

• LeCun, Bottou, Bengio, Haffner, 
Gradient-based learning applied to 
document recognition, Proc. IEEE, 
1998 
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The	Second	Popular	Deep	CNN

• Krizhevsky, Sutskever, Hinton, 
ImageNet Classification with Deep 
Convolutional Neural Networks, 
NIPS 2012



Why	Took	14	years?	(1998-2012)
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• People do not trust local minimum and may be annoyed by 
SGD failures. 

Which of  the following will fail CNNs on MNIST?
– Use the raw pixel values between [0, 255]
– Initialize all the CNN weights as 0
– Use no intercept (i.e., Wx instead of  Wx+b) in the fully connect 

layer
– The batch size is too small (i.e., one sample per batch)
– Use the whole dataset as one batch
– Do not shuffle the data before training



Why	Took	14	years?	(1998-2012)
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• People do not trust local minimum and may be annoyed by 
SGD failures. 

Which of  the following will fail CNNs on MNIST?
– Use the raw pixel values between [0, 255]

Yes. Almost all CNNs prefer to normalize pixel value 
normalized between [0,1]



Why	Took	14	years?	(1998-2012)
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• People do not trust local minimum and may be annoyed by 
SGD failures. 

Which of  the following will fail CNNs on MNIST?
– Initialize all the CNN weights as 0

Yes. network weights should be initialized randomly



Why	Took	14	years?	(1998-2012)
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• People do not trust local minimum and may be annoyed by 
SGD failures. 

Which of  the following will fail CNNs on MNIST?
– Use no intercept (i.e., Wx instead of  Wx+b) in the fully connect 

layer

No. Network with zero intercepts will still work.



Why	Took	14	years?	(1998-2012)
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• People do not trust local minimum and may be annoyed by 
SGD failures. 

Which of  the following will fail CNNs on MNIST?
– The batch size is too small (i.e., one sample per batch)

No. Small batch size will still work, but make the 
optimization slower



Why	Took	14	years?	(1998-2012)
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• People do not trust local minimum and may be annoyed by 
SGD failures. 

Which of  the following will fail CNNs on MNIST?
– Use the whole dataset as one batch

Yes. We will lose the “stochastic” factor by taking 
whole dataset as one batch, and the optimization will 
fall into bad local minimum. 



Why	Took	14	years?	(1998-2012)
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• People do not trust local minimum and may be annoyed by 
SGD failures. 

Which of  the following will fail CNNs on MNIST?
– Do not shuffle the data before traiing

Yes. Random shuffling is important. 



Why	Took	14	years?	(1998-2012)
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• People do not trust local minimum and may be annoyed by 
SGD failures. 

Which of  the following will fail CNNs on MNIST?
– Use the raw pixel values between [0, 255]
– Initialize all the CNN weights as 0
– Use no intercept (i.e., Wx instead of  Wx+b) in the fully connect 

layer
– The batch size is too small (i.e., one sample per batch)
– Use the whole dataset as one batch
– Do not shuffle the data before training



Why	Took	14	years?	(1998-2012)
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• People do not trust local minimum and may be annoyed by 
SGD failures. 

• On MNIST CNN is not significant better than others

Results from http://yann.lecun.com/exdb/mnist/

Model Testing Error
KNN, subsample 16 x 16 1.1%

Boosted tree 1.53%

Non-linear SVM by LeCun’98 1.0%

Non-linear SVM by DeCoste’02 0.56%

2-layer MLP 2.45%

CNN LeNet-5 0.95%



Why	Took	14	years?	(1998-2012)
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• People do not trust local minimum and may be annoyed by 
SGD failures. 

• On MNIST CNN is not significant better than others
• But on ImageNet things changed!



Differences	between	MNIST	and	ImageNet
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MNIST ImageNet LSVRC

Image size 28 x 28 x 1 224 x 224 x 3*

Num of  images 60K 1,200K

Num of  category 10 1000

In-class variation small large

*Resized size. Can be as large as 512 x 512



Differences	between	MNIST	and	ImageNet
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MNIST ImageNet LSVRC

Image size 28 x 28 x 1 224 x 224 x 3

Num of  images 60K 1,200K

Num of  category 10 1000

In-class variation small large

More 
data

Bigger 
modelSVMs CNNs



Let’s	implement	these	two	popular	models.
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To	implement	LeNet is	easy	…
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1. Download MNIST data and load them into memory

2. Build a 5 layer CNN model

3. Train model and evaluate

You can even run on your laptop without GPU



Implement	LeNet-5	using	Keras
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model = Sequential()
model.add(Conv2D(filters = 6, kernel_size = 5, strides = 1, activation = 'relu', 

input_shape = (32,32,1)))
model.add(MaxPooling2D(pool_size = 2, strides = 2))
model.add(Conv2D(filters = 16, kernel_size = 5, strides = 1, activation = 'relu', 

input_shape = (14,14,6)))
model.add(MaxPooling2D(pool_size = 2, strides = 2))
model.add(Flatten())
model.add(Dense(units = 120, activation = 'relu'))
model.add(Dense(units = 84, activation = 'relu'))
model.add(Dense(units = 10, activation = 'softmax'))
model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics 

= ['accuracy'])
model.fit(X_train ,Y_train, steps_per_epoch = 10, epochs = 40)



Explain	LeNet-5
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• filters
• kernel_size
• Strides
• pool_size
• model.add(Flattern())
• activation=relu/sigmoid/softmax



But	to	implement	AlexNet is	hard…

29

“Ilya convinced me that with an additional week of effort, we 
could get equally good results on ImageNet. It actually took 
five months to match the 2010 state-of-the-art, and several 
more months to improve on it convincingly.”

“Time scales aside, his intuition was correct.”

Alex Krizhevsky was working on CNNs in 2011. He recalled:



But	to	implement	AlexNet is	hard…
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Suppose you are the chief  architect, what is the solution for
• load 1.2M images into memory
• do convolution via GPUs
• AlexNet model: two stream using 2 GPUs (not necessary 

though)



Challenge	1:	Cannot	Load	All	ImageNet	Data	
into	Memory
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• Can not load into memory: 1.2M x 224 x 224 x 3 = 180G 
• Keras’ solution: use data iterator

class NaiveImageNetIterator: 

def __init__(self, total_batches): 

self.ib, self.nb = 0, total_batches

def __iter__(self): 

return self 

def next(self): # Python 3: def __next__(self) 

if self.ib >= self.nb: raise StopIteration

else: 

self.ib += 1 

return Load_Batch_from_Disk(self.ib) 



Challenge	1:	Cannot	Load	All	ImageNet	Data	
into	Memory
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Can not directly load into mem: 1.2M x 224 x 224 x 3 = 180G 
• Keras’ solution: use data iterator

class NaiveImageNetIterator: …. 

data_iterator = NaiveImageNetIterator(120)

model.fit_generator(data_iterator, sample_per_epoch=1000)



Challenge	1:	Cannot	Load	All	ImageNet	Data	
into	Memory
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Can not directly load into mem: 1.2M x 224 x 224 x 3 = 180G 
• Keras’ solution: use data iterator
• Tensorflow’s low level API: use tf.data.Dataset

- tf.data.Dataset can generate an iterator of  Tensor objects        
https://www.tensorflow.org/api_docs/python/tf/data
- Many detection toolkits use TFRecord to organize many 

images
• tensorpack provides an efficient & easy to use 3rd party 

implementation
https://github.com/tensorpack/tensorpack



Challenge	1:	Cannot	Load	All	ImageNet	Data	
into	Memory
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Can not directly load into mem: 1.2M x 224 x 224 x 3 = 180G 
• Keras’ solution: use data iterator
• Tensorflow’s native solution: use tf.data.Dataset
• 3rd Party implementation: Tensorpack

(https://github.com/tensorpack/tensorpack)
– Use Tensorpack.dataflow
– See example: ImageNetModels/imagenet_utils.py
– The most efficient solution so far 

I may provide a note with more details after the class. 

But you may have to dig into these examples to play with these solutions



Challenge	2:	Convolution	via	GPUs
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Convolution in GPU is not trivial
- Multi-channel (traditional CV do single channel)
- Multi kernel size (optimization of  5x5 filter differs from 7x7)

See Alex’s dizzying code 
https://code.google.com/archive/p/cuda-convnet/



Challenge	2:	Convolution	via	GPUs
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Convolution in GPU is not trivial
- Multi-channel (traditional CV do single channel)
- Multi kernel size (optimization of  5x5 filter differs from 7x7)

Use NVida’s library: 
- cuBLAS in early days (converting conv to matrix multiply)
- cuDNN: Nvidia’s dominant weapon in GPU market



Challenge	3:	Two	Stream	CNN
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Amazing hacks in 2012

No longer necessary with the 
new GPU cards



Implement	AlexNet with	Keras
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# layer 1
alexnet.add(Conv2D(96, (11, 11), 

input_shape=img_shape, 
padding=valid', 
kernel_regularizer=l2(l2_reg))) 

alexnet.add(BatchNormalization()) 
alexnet.add(Activation('relu'))
alexnet.add(MaxPooling2D(strides=(

4, 4)))
# layer 2
alexnet.add(Conv2D(256, (5, 5), 

padding='same')) 
alexnet.add(BatchNormalization()) 
alexnet.add(Activation('relu')) 
alexnet.add(MaxPooling2D(pool_siz

e=(2, 2)))

What is the number of  para. in Layer 1
- (11 x 11 x 3) * 96 = 35K

What is the output size of  layer 1?
- (224-11) /4+1 = 55
- Output size (56 x 56 x 96)

What is the number of  para in layer 2?
- (5 x 5 x 96) * 256 = 710K

What is the output size of  layer 2?
- 55/2 = 27
- Output size (27 x 27 x 256)



Implement	AlexNet with	Keras
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# layer 1
alexnet.add(Conv2D(96, (11, 11), 

input_shape=img_shape, 
padding='same', 
kernel_regularizer=l2(l2_reg))) 

alexnet.add(BatchNormalization()) 
alexnet.add(Activation('relu')) 

alexnet.add(MaxPooling2D(pool_
size=(2, 2)))

# layer 2
alexnet.add(Conv2D(256, (5, 5), 

padding='same')) 
alexnet.add(BatchNormalization()) 
alexnet.add(Activation('relu')) 
alexnet.add(MaxPooling2D(pool_siz

e=(2, 2)))

# layer 3
alexnet.add(ZeroPadding2D((1, 1))) 

alexnet.add(Conv2D(512, (3, 3), 
padding='same')) 

alexnet.add(BatchNormalization()) 
alexnet.add(Activation('relu')) 
alexnet.add(MaxPooling2D(pool_siz

e=(2, 2)))

# layer 4
alexnet.add(ZeroPadding2D((1, 1))) 
alexnet.add(Conv2D(1024, (3, 3), 

padding='same')) 
alexnet.add(BatchNormalization()) 
alexnet.add(Activation('relu'))



Implement	AlexNet in	Keras (con’t)
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# layer 5
alexnet.add(ZeroPadding2D((1, 1))) 
alexnet.add(Conv2D(1024, (3, 3), 
padding='same')) 

alexnet.add(BatchNormalization()) 
alexnet.add(Activation('relu')) 
alexnet.add(MaxPooling2D(pool_size=(2, 
2)))

# layer 6
alexnet.add(Flatten()) 
alexnet.add(Dense(3072)) 
alexnet.add(BatchNormalization()) 
alexnet.add(Activation('relu')) 
alexnet.add(Dropout(0.5))

# layer 7
alexnet.add(Dense(4096)) 
alexnet.add(BatchNormalization()) 
alexnet.add(Activation('relu')) 
alexnet.add(Dropout(0.5)) # 

# layer 8 
alexnet.add(Dense(n_classes)) 
alexnet.add(BatchNormalization()) 
alexnet.add(Activation('softmax'))



From	Keras to	TF	Estimator
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Keras is easy to use but not efficient
- Large memory consumption
- Difficulty to scale to multiple GPUs

Use tensorflow’s estimator for large datasets: 
- TF Estimator can use Keras’ layers 
- TF Estimator can replace Keras Sequential() model in large 

scale



Improving	AlexNet
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Try smaller receptive fields, more filters, with more layers
- Matt Zeiler Network
- VggNet

Concatenate multiple size of  filters 
- GoogLeNet

Two techniques are important: 
- 1x1 conv (aka “network in network”)
- Residual Network



1x1	convolution
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Consider two layers of  CNN
- Input: 56x 56 x 3
- Layer A:  (11x11)*96 filters, output (56 x 56 x 96), 
- Layer B:  (5 x 5) *256 filters output (56 x 56 x 256)
Layer B has (5 x 5 x 96)* 256 parameters, also consumes a lot 
of  GPU memory. How to reduce the parameter?

Add a new layer between A and B
- Layer A’:   (1x1)*32 filters, output (56 x 56 x 32)
Now layer B has (5 x 5 x 32)*256 filters. 3x less parameters!



Why	Residual	Network?

Problem: Is learning better networks as simple as 
stacking more layers?
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Deep network + residual learning can solve this problem.



Residual	Net
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Residual	Net	With	Bottleneck	Structure
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A number of  future improvement



Treasure	from	ImageNet	Dataset
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By adapting models trained from ImageNet, we can build 
a decent classifier with limited data. 

Very 
few new 

label

• Tune the last 
layer

• Or last layer as 
feature for SVM

Enough 
new 
labels

• Tune the whole 
network

New tasks

Example code : 
http://caffe.berkeleyvision.org
/gathered/examples/finetune_
flickr_style.html



But	ImageNet	May	NOT	Be	Ideal	For	Course	Projects
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• Too crowded in the competition
• Relatively difficulty to find novel ideas

If  you want to try a final project on large scale recognition, 
we recommend Celebrity1M faces

After break (8:30pm), will join us our guest lecture Dr. Lei 
Zhang, who is the creator of  Microsoft Celebrity1M. 


