
1

Convolutional Neural Networks

Liangliang Cao

https://columbia6894.github.io/

•2

Outline

• Discussing conv. filters from traditional viewpoints

• The first popular deep CNN: LeNet in 1998

• The second popular deep CNN: AlexNet in 2012

• Why 14 years? Challenges of implementing AlexNet?

• Improving CNNs
– 1x1 convolution - Residual network

Convolutional	Filters

3

• Image filtering are usually represented by the convolution
between an image and a mask.

•4

Image	Filters

• Image filtering are usually represented by the convolution
between an image and a mask.

Edge detection

Blurring

Sharpen

Discussions

5

• Filters are powerful for many vision applications

We can use filters for recognition, enhancement…

That is why nowadays CNNs almost dominate all
vision applications

Discussions

6

• Filters are powerful for many vision applications

• Convolutions are expensive
– At every pixel we need do multi-multiplication with its

neighborhood values
– Algorithms of speedup*: integral image, separable filters, time

domain convolution -> frequency multiplication, etc
– Hardware of speedup: GPU, TPU

*This suggests a number of research ideas of improving deep cnn

Discussions

7

• Filters are powerful for many vision applications

• Convolutions are expensive

• How many filters can we learn?
– Dozens? Hundreds? Millions? More?

8

Huge	Amount	of	Filters:	An	Example

[Viola and Jones]: face detection via millions* of simple filters

Haar Wavelet Haar like features
Given two adjacent
rectangular regions,
sums up the pixel
intensities in each
region and calculates
the difference between
the two sums

Efficient computation

*This suggests to find ways to train numerous filters…

Discussions

9

• Filters are powerful for many vision applications

• Convolutions are expensive

• How many filters can we learn?

• How to manage larger neighborhood?
– Sub-sample the image
– Larger receptive fields (i.e., filter size)
– Stack multi convolutional layers together -> deep CNNs

Let’s	Go	to	Multi-Layer	CNNs	
(deep	CNNs)!

10

•11

The	First	Popular	Deep	CNN

• LeCun, Bottou, Bengio, Haffner,
Gradient-based learning applied to
document recognition, Proc. IEEE,
1998

•12

The	Second	Popular	Deep	CNN

• Krizhevsky, Sutskever, Hinton,
ImageNet Classification with Deep
Convolutional Neural Networks,
NIPS 2012

Why	Took	14	years?	(1998-2012)

13

• People do not trust local minimum and may be annoyed by
SGD failures.

Which of the following will fail CNNs on MNIST?
– Use the raw pixel values between [0, 255]
– Initialize all the CNN weights as 0
– Use no intercept (i.e., Wx instead of Wx+b) in the fully connect

layer
– The batch size is too small (i.e., one sample per batch)
– Use the whole dataset as one batch
– Do not shuffle the data before training

Why	Took	14	years?	(1998-2012)

14

• People do not trust local minimum and may be annoyed by
SGD failures.

Which of the following will fail CNNs on MNIST?
– Use the raw pixel values between [0, 255]

Yes. Almost all CNNs prefer to normalize pixel value
normalized between [0,1]

Why	Took	14	years?	(1998-2012)

15

• People do not trust local minimum and may be annoyed by
SGD failures.

Which of the following will fail CNNs on MNIST?
– Initialize all the CNN weights as 0

Yes. network weights should be initialized randomly

Why	Took	14	years?	(1998-2012)

16

• People do not trust local minimum and may be annoyed by
SGD failures.

Which of the following will fail CNNs on MNIST?
– Use no intercept (i.e., Wx instead of Wx+b) in the fully connect

layer

No. Network with zero intercepts will still work.

Why	Took	14	years?	(1998-2012)

17

• People do not trust local minimum and may be annoyed by
SGD failures.

Which of the following will fail CNNs on MNIST?
– The batch size is too small (i.e., one sample per batch)

No. Small batch size will still work, but make the
optimization slower

Why	Took	14	years?	(1998-2012)

18

• People do not trust local minimum and may be annoyed by
SGD failures.

Which of the following will fail CNNs on MNIST?
– Use the whole dataset as one batch

Yes. We will lose the “stochastic” factor by taking
whole dataset as one batch, and the optimization will
fall into bad local minimum.

Why	Took	14	years?	(1998-2012)

19

• People do not trust local minimum and may be annoyed by
SGD failures.

Which of the following will fail CNNs on MNIST?
– Do not shuffle the data before traiing

Yes. Random shuffling is important.

Why	Took	14	years?	(1998-2012)

20

• People do not trust local minimum and may be annoyed by
SGD failures.

Which of the following will fail CNNs on MNIST?
– Use the raw pixel values between [0, 255]
– Initialize all the CNN weights as 0
– Use no intercept (i.e., Wx instead of Wx+b) in the fully connect

layer
– The batch size is too small (i.e., one sample per batch)
– Use the whole dataset as one batch
– Do not shuffle the data before training

Why	Took	14	years?	(1998-2012)

21

• People do not trust local minimum and may be annoyed by
SGD failures.

• On MNIST CNN is not significant better than others

Results from http://yann.lecun.com/exdb/mnist/

Model Testing Error
KNN, subsample 16 x 16 1.1%

Boosted tree 1.53%

Non-linear SVM by LeCun’98 1.0%

Non-linear SVM by DeCoste’02 0.56%

2-layer MLP 2.45%

CNN LeNet-5 0.95%

Why	Took	14	years?	(1998-2012)

22

• People do not trust local minimum and may be annoyed by
SGD failures.

• On MNIST CNN is not significant better than others
• But on ImageNet things changed!

Differences	between	MNIST	and	ImageNet

23

MNIST ImageNet LSVRC

Image size 28 x 28 x 1 224 x 224 x 3*

Num of images 60K 1,200K

Num of category 10 1000

In-class variation small large

*Resized size. Can be as large as 512 x 512

Differences	between	MNIST	and	ImageNet

24

MNIST ImageNet LSVRC

Image size 28 x 28 x 1 224 x 224 x 3

Num of images 60K 1,200K

Num of category 10 1000

In-class variation small large

More
data

Bigger
modelSVMs CNNs

Let’s	implement	these	two	popular	models.

25

To	implement	LeNet is	easy	…

26

1. Download MNIST data and load them into memory

2. Build a 5 layer CNN model

3. Train model and evaluate

You can even run on your laptop without GPU

Implement	LeNet-5	using	Keras

27

model = Sequential()
model.add(Conv2D(filters = 6, kernel_size = 5, strides = 1, activation = 'relu',

input_shape = (32,32,1)))
model.add(MaxPooling2D(pool_size = 2, strides = 2))
model.add(Conv2D(filters = 16, kernel_size = 5, strides = 1, activation = 'relu',

input_shape = (14,14,6)))
model.add(MaxPooling2D(pool_size = 2, strides = 2))
model.add(Flatten())
model.add(Dense(units = 120, activation = 'relu'))
model.add(Dense(units = 84, activation = 'relu'))
model.add(Dense(units = 10, activation = 'softmax'))
model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics

= ['accuracy'])
model.fit(X_train ,Y_train, steps_per_epoch = 10, epochs = 40)

Explain	LeNet-5

28

• filters
• kernel_size
• Strides
• pool_size
• model.add(Flattern())
• activation=relu/sigmoid/softmax

But	to	implement	AlexNet is	hard…

29

“Ilya convinced me that with an additional week of effort, we
could get equally good results on ImageNet. It actually took
five months to match the 2010 state-of-the-art, and several
more months to improve on it convincingly.”

“Time scales aside, his intuition was correct.”

Alex Krizhevsky was working on CNNs in 2011. He recalled:

But	to	implement	AlexNet is	hard…

30

Suppose you are the chief architect, what is the solution for
• load 1.2M images into memory
• do convolution via GPUs
• AlexNet model: two stream using 2 GPUs (not necessary

though)

Challenge	1:	Cannot	Load	All	ImageNet	Data	
into	Memory

31

• Can not load into memory: 1.2M x 224 x 224 x 3 = 180G
• Keras’ solution: use data iterator

class NaiveImageNetIterator:

def __init__(self, total_batches):

self.ib, self.nb = 0, total_batches

def __iter__(self):

return self

def next(self): # Python 3: def __next__(self)

if self.ib >= self.nb: raise StopIteration

else:

self.ib += 1

return Load_Batch_from_Disk(self.ib)

Challenge	1:	Cannot	Load	All	ImageNet	Data	
into	Memory

32

Can not directly load into mem: 1.2M x 224 x 224 x 3 = 180G
• Keras’ solution: use data iterator

class NaiveImageNetIterator: ….

data_iterator = NaiveImageNetIterator(120)

model.fit_generator(data_iterator, sample_per_epoch=1000)

Challenge	1:	Cannot	Load	All	ImageNet	Data	
into	Memory

33

Can not directly load into mem: 1.2M x 224 x 224 x 3 = 180G
• Keras’ solution: use data iterator
• Tensorflow’s low level API: use tf.data.Dataset

- tf.data.Dataset can generate an iterator of Tensor objects
https://www.tensorflow.org/api_docs/python/tf/data
- Many detection toolkits use TFRecord to organize many

images
• tensorpack provides an efficient & easy to use 3rd party

implementation
https://github.com/tensorpack/tensorpack

Challenge	1:	Cannot	Load	All	ImageNet	Data	
into	Memory

34

Can not directly load into mem: 1.2M x 224 x 224 x 3 = 180G
• Keras’ solution: use data iterator
• Tensorflow’s native solution: use tf.data.Dataset
• 3rd Party implementation: Tensorpack

(https://github.com/tensorpack/tensorpack)
– Use Tensorpack.dataflow
– See example: ImageNetModels/imagenet_utils.py
– The most efficient solution so far

I may provide a note with more details after the class.

But you may have to dig into these examples to play with these solutions

Challenge	2:	Convolution	via	GPUs

35

Convolution in GPU is not trivial
- Multi-channel (traditional CV do single channel)
- Multi kernel size (optimization of 5x5 filter differs from 7x7)

See Alex’s dizzying code
https://code.google.com/archive/p/cuda-convnet/

Challenge	2:	Convolution	via	GPUs

36

Convolution in GPU is not trivial
- Multi-channel (traditional CV do single channel)
- Multi kernel size (optimization of 5x5 filter differs from 7x7)

Use NVida’s library:
- cuBLAS in early days (converting conv to matrix multiply)
- cuDNN: Nvidia’s dominant weapon in GPU market

Challenge	3:	Two	Stream	CNN

37

Amazing hacks in 2012

No longer necessary with the
new GPU cards

Implement	AlexNet with	Keras

38

layer 1
alexnet.add(Conv2D(96, (11, 11),

input_shape=img_shape,
padding=valid',
kernel_regularizer=l2(l2_reg)))

alexnet.add(BatchNormalization())
alexnet.add(Activation('relu'))
alexnet.add(MaxPooling2D(strides=(

4, 4)))
layer 2
alexnet.add(Conv2D(256, (5, 5),

padding='same'))
alexnet.add(BatchNormalization())
alexnet.add(Activation('relu'))
alexnet.add(MaxPooling2D(pool_siz

e=(2, 2)))

What is the number of para. in Layer 1
- (11 x 11 x 3) * 96 = 35K

What is the output size of layer 1?
- (224-11) /4+1 = 55
- Output size (56 x 56 x 96)

What is the number of para in layer 2?
- (5 x 5 x 96) * 256 = 710K

What is the output size of layer 2?
- 55/2 = 27
- Output size (27 x 27 x 256)

Implement	AlexNet with	Keras

39

layer 1
alexnet.add(Conv2D(96, (11, 11),

input_shape=img_shape,
padding='same',
kernel_regularizer=l2(l2_reg)))

alexnet.add(BatchNormalization())
alexnet.add(Activation('relu'))

alexnet.add(MaxPooling2D(pool_
size=(2, 2)))

layer 2
alexnet.add(Conv2D(256, (5, 5),

padding='same'))
alexnet.add(BatchNormalization())
alexnet.add(Activation('relu'))
alexnet.add(MaxPooling2D(pool_siz

e=(2, 2)))

layer 3
alexnet.add(ZeroPadding2D((1, 1)))

alexnet.add(Conv2D(512, (3, 3),
padding='same'))

alexnet.add(BatchNormalization())
alexnet.add(Activation('relu'))
alexnet.add(MaxPooling2D(pool_siz

e=(2, 2)))

layer 4
alexnet.add(ZeroPadding2D((1, 1)))
alexnet.add(Conv2D(1024, (3, 3),

padding='same'))
alexnet.add(BatchNormalization())
alexnet.add(Activation('relu'))

Implement	AlexNet in	Keras (con’t)

40

layer 5
alexnet.add(ZeroPadding2D((1, 1)))
alexnet.add(Conv2D(1024, (3, 3),
padding='same'))

alexnet.add(BatchNormalization())
alexnet.add(Activation('relu'))
alexnet.add(MaxPooling2D(pool_size=(2,
2)))

layer 6
alexnet.add(Flatten())
alexnet.add(Dense(3072))
alexnet.add(BatchNormalization())
alexnet.add(Activation('relu'))
alexnet.add(Dropout(0.5))

layer 7
alexnet.add(Dense(4096))
alexnet.add(BatchNormalization())
alexnet.add(Activation('relu'))
alexnet.add(Dropout(0.5)) #

layer 8
alexnet.add(Dense(n_classes))
alexnet.add(BatchNormalization())
alexnet.add(Activation('softmax'))

From	Keras to	TF	Estimator

41

Keras is easy to use but not efficient
- Large memory consumption
- Difficulty to scale to multiple GPUs

Use tensorflow’s estimator for large datasets:
- TF Estimator can use Keras’ layers
- TF Estimator can replace Keras Sequential() model in large

scale

Improving	AlexNet

42

Try smaller receptive fields, more filters, with more layers
- Matt Zeiler Network
- VggNet

Concatenate multiple size of filters
- GoogLeNet

Two techniques are important:
- 1x1 conv (aka “network in network”)
- Residual Network

1x1	convolution

43

Consider two layers of CNN
- Input: 56x 56 x 3
- Layer A: (11x11)*96 filters, output (56 x 56 x 96),
- Layer B: (5 x 5) *256 filters output (56 x 56 x 256)
Layer B has (5 x 5 x 96)* 256 parameters, also consumes a lot
of GPU memory. How to reduce the parameter?

Add a new layer between A and B
- Layer A’: (1x1)*32 filters, output (56 x 56 x 32)
Now layer B has (5 x 5 x 32)*256 filters. 3x less parameters!

Why	Residual	Network?

Problem: Is learning better networks as simple as
stacking more layers?

44

Deep network + residual learning can solve this problem.

Residual	Net

45

Residual	Net	With	Bottleneck	Structure

46

A number of future improvement

Treasure	from	ImageNet	Dataset

47

By adapting models trained from ImageNet, we can build
a decent classifier with limited data.

Very
few new

label

• Tune the last
layer

• Or last layer as
feature for SVM

Enough
new
labels

• Tune the whole
network

New tasks

Example code :
http://caffe.berkeleyvision.org
/gathered/examples/finetune_
flickr_style.html

But	ImageNet	May	NOT	Be	Ideal	For	Course	Projects

48

• Too crowded in the competition
• Relatively difficulty to find novel ideas

If you want to try a final project on large scale recognition,
we recommend Celebrity1M faces

After break (8:30pm), will join us our guest lecture Dr. Lei
Zhang, who is the creator of Microsoft Celebrity1M.

