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Deep Learning for Computer Vision, Speech, and Language

Outline

• A brief revisit of sampling, pitch/formant and MFCC

• DNN-HMM (hybrid) acoustic modeling

• Advanced acoustic modeling

I Convolutional neural networks (CNNs)

I Recurrent neural networks (RNNs) and long short-term
memory (LSTM) networks

I Convolutional long short-term memory (CLSTM) networks
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Nyquist Sampling
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Pitch and Formants
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Mel-Frequency Filter Bank and MFCC

DFT MEL Log DCT MFCC
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Mel-Frequency Filter Bank and MFCC

m = 2595 log10

(
1 + f

100

)

• multi-resolution on frequency bins
• use DCT to replace IDFT for better dimension decorrelation and energy
clustering
• typical order around 13 for speech recognition
• increased order for speaker recognition/verification (typically 19-22)
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Input Speech Features for DNNs

• Commonly-used hand-crafted features

I MFCCs
I Mel-frequency filter bank (FBank)
I Speaker adapted features (FMLLR)
I Appended speaker embedding vectors (i-vectors)

• Let DNNs learn the features

I Power spectra
I Raw audio signals

EECS 6894, Columbia University 7/43



Deep Learning for Computer Vision, Speech, and Language

Two Streams of DNN Acoustic Models
• Hybrid DNNs

I Commonly referred to as DNN-HMM or CD-DNN-HMM
I Use GMM-HMM alignments as labels
I Use dictionary and language model for decoding.

• End-to-end (E2E) DNNs (will be addressed in next lecture)
I Directly deal with sequence-to-sequence mapping problem with

unequal consequence lengths
I Do not need alignments, dictionary and language model in

principle.
I Two E2E architectures:

I Connectionist Temporal Classification (CTC)
I Encoder-Decoder Attention models
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GMM-HMM: Forced Alignment

SIL SIL-HH+AW HH-AW+AA AW-AA+R AA-R+Y R-Y+UW Y-UW+SIL SIL

“How are  you”

• Given the text label, how to find the best underlying state
sequence?
I same as decoding except the label is known
I Viterbi algorithm (dynamic programming)

• Often referred to as Viterbi alignments in speech community
• Widely used in deep learning ASR to generate the target
labels for the training data
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Context-Dependent DNNs
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DNN-HMMs: An Typical Training Recipe
• Preparation

I 40-dim FBank features with ±4 adjacent frames (input dim = 40x9)
I use an existing model to generate alignments which are then converted to 1-hot

targets from each frame
I create training and validation data sets
I estimate priors p(s) of CD states

• Training
I set DNN configuration (multiple hidden layers, softmax output layers and

cross-entropy loss function)
I initialization
I optimization based on back-prop using SGD on the training set while monitoring

loss on the validation set
• Test

I push input features from test utterances through the DNN acoustic model to get
their posteriors

I convert posteriors to likelihoods
I Viterbi decoding on the decoding network
I measure the word error rate
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Training A Hybrid DNN-HMM System
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Convolutional Neural Networks (CNNs)
• Bio-inspired feed-forward neural networks*

I individual cortical neurons in visual cortex respond to stimuli in a restricted
region of space known as the receptive field.

I receptive fields of different neurons partially overlap such that they tile the
visual field.

I response of an individual neuron to stimuli within its receptive field can be
approximated mathematically by a convolution operation.

• LeNet-5
I Y. LeCun, L. Bottou, Y. Bengio, P. Haffner (1998). "Gradient-based

learning applied to document recognition," Proc. of the IEEE.
I A 7-layer CNN that outperformed other techniques on a standard

handwritten digit recognition task.
• Advantages:

I Local (sparse) connectivity
I Weight sharing
I translation-invariant

*adapted from wikipedia
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Convolutional Neural Networks (CNNs)

• Convolutional layers with nonlinearity

zk
ij = σ((W k ∗ x)ij + bk)

W (m,n) ∗ x(m,n) =
+∞∑

u=−∞

+∞∑
v=−∞

x(u, v)W (u−m, v − n)

W (m,n) 6= 0 only for 0 ≤ m ≤M, 0 ≤ n ≤ N

• Pooling layers
I subsampling
I typically max-pooling or average-pooling

• Fully connected layers
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Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)

EECS 6894, Columbia University 20/43



Deep Learning for Computer Vision, Speech, and Language

Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)
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A Brief Summary of Some CNN Terminology

• feature map
• local receptive field (filter or kernel)
• padding
• stride
• convolution
• pooling

I max-pooling
I average-pooling
I pooling along different axes
I resulting different resolutions
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Tensor Representation
Layer  l-1 Layer  l

W
0

W
1

• weights W pq
mn connecting each unit of the p-th feature map at layer l − 1 and the q-th

feature map of layer l with the local receptive filter w(m,n).
• number of parameters in the weights that connect the two convolutional layers is (ignore

biases here)

|W pq
mn| = M ×N × P ×Q

where M and N are the dimensions of the local receptive filters and P and Q are the
numbers of feature maps in layer l − 1 and layer l.
• relation of input and output dimensionality

O = W −K + 2P
S

+ 1

where W is the input dimensionality, O the output dimensionality, K the filter size, P the
padding and S the stride.
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An Example of CNN Acoustic modeling
L
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Notable Development In CNNs
• AlexNet

I Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton, "ImageNet Classification with
Deep Convolutional Networks," NIPS 2012.

I 5 conv layers, 3 fully-connected layers, ReLU, max-pooling, dropout, data
augmentation, 2-GPU implementation

• ZFNet
I Matthew D. Zeiler and Rob Fergus, "Visualizing and understanding convolutional

networks." ECCV, 2014.
I similar architecture to AlexNet, reduced window size and stride step in first conv layer.

• VGGNet
I Karen Simonyan and Andrew Zisserman, "Very deep convolutional neural networks for

large-scale image recognition," ICLR 2015.
I up to 19 conv layers – small 3x3 filters with stride 1, padding, 2x2 max-pooling layers

with stride 2 every 2,3 or 4 conv layers
• ResNet

I Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun, "Deep Residual Learning for
Image Recognition," CVPR 2016.

I 152 layers with 3x3 filters
I introduced residual learning by a direct by-pass identity link

• DenseNet
I Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger, "Densely

connected convolutional networks," CVPR 2017.
I do not throw away anything you learn along the way
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VGG Acoustic Modeling

T. Sercu, C. Puhrsch, B. Kingsbury and Y. LeCun, "Very Deep Multilingual Convolutional Neural Networks for
LVCSR," ICASSP 2016.
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Recurrent Neural Networks (RNNs)

• Sequential data is
ubiquitous – speech, video,
text, stock index · · ·
• Sequence modeling is
crucial – how to model the
history?

ht = gt(xt,xt−1,xt−2, · · · ,x1)
• RNNs model sequences
with shared parameters
(functions)

ht = f(ht−1,xt;θ)

h

x

f
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Compact and Unfolded Representations of RNNs

h
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U
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unfolded

at = b+ Wht−1 + Uxt

ht = tanh(at)
ot = c+ Vht

ŷt = softmax(ot)
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Some RNN Configurations

one-to-many mapping — image captioning.
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Some RNN Configurations

many-to-one mapping — sentiment analysis.
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Some RNN Configurations

synchronized many-to-many mapping — speech recognition, video
labeling.
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Some RNN Configurations

asynchronized many-to-many mapping — speech recognition, machine
translation.
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Back-Propagation Through Time (BPTT)
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at = b+ Wht−1 + Uxt

ht = tanh(at)
ot = c+ Vht

ŷt = softmaxK(ot)

Lt = −
K∑

k=1
yt,k log ŷt,k

L =
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t=1
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Back-Propagation Through Time (BPTT)
Parameters to be optimized: W, U, V, b and c

∂L
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∑
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∑
i

∂hi
t

∂W
∂L
∂hi

t

∂L
∂U =

∑
t

∑
i

∂hi
t

∂U
∂L
∂hi

t

∂L
∂b =

∑
t

∂ht
∂b

∂L
∂ht

∂L
∂V =

∑
t

∑
i

∂hi
t

∂V
∂L
∂hi

t

∂L
∂c =

∑
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which involves gradients of two internal nodes ot and ht.

∂L
∂ot

,
∂L
∂ht
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Back-Propagation Through Time (BPTT)

∂L
∂ot

= ∂ŷt

∂ot

∂Lt

∂ŷt

∂L
∂Lt

= ŷt − yt

evaluate the gradient of ht backward starting from the last time step T:

∂L
∂hT

= ∂oT

∂hT

∂LT

∂oT

∂L
∂LT

= VT(ŷT − yT)

∂L
∂ht

= ∂ot

∂ht

∂L
∂ot

+ ∂ht+1
∂ht

∂L
∂ht+1

= VT(ŷt − yt) + ∂at+1
∂ht

∂ht+1
∂at+1

∂L
∂ht+1

= VT(ŷt − yt) + WT · diag
(
1− h2

t+1

)
· ∂L
∂ht+1
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Back-Propagation Through Time (BPTT)
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An LSTM Memory Cell

it

ct

ft

ot

xt ht− xt ht−

xt

ht−

ht

xt ht−

• input gate: it = σ(Wixxt + Wihht−1 + bi)
• forget gate: ft = σ(Wfxxt + Wfhht−1 + bf )
• cell candidate: gt = tanh(Wcxxt + Wchht−1 + bc)
• cell: ct = ft � ct−1 + it � gt

• output gate: ot = σ(Woxxt + Wohht−1 + bo)
• hidden state output: ht = ot � tanh(ct)
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Unfolded LSTM Representation
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Why LSTMs Work?
∂ct

∂ck
= ∂ct

∂ct−1

∂ct−1
∂ct−2

· · · ∂ck+1
∂ck

= diag(ft � ft−1 � · · · � fk+1)

• Sepp Horchreiter and Jürgen Schmidhuber,
"Long Short-Term Memory," Neural
Computation 9, 1997

• a recurrent self-connection with weight 1.0 –
constant error carousel (CEC)

• Felix A. Gers, Jürgen Schmidhuber and Fred
Cummins. "Learning to Forget: Continual
Prediction with LSTM." Neural Computation
12, 2000

• A forget gate added to learn to reset
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A Bi-directional Multi-layer LSTM for ASR
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A CLSTM for ASR

EECS 6894, Columbia University 43/43


