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Deep Learning for Computer Vision, Speech, and Language

Outline

® A brief revisit of sampling, pitch/formant and MFCC
¢ DNN-HMM (hybrid) acoustic modeling

® Advanced acoustic modeling
» Convolutional neural networks (CNNs)

» Recurrent neural networks (RNNs) and long short-term
memory (LSTM) networks

» Convolutional long short-term memory (CLSTM) networks
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Nyquist Sampling
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Pitch and Formants
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Mel-Frequency Filter Bank and MFCC

— DFT = MEL = Log = DCT —» MFCC
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Mel-Frequency Filter Bank and MFCC
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® multi-resolution on frequency bins

use DCT to replace IDFT for better dimension decorrelation and energy
clustering

typical order around 13 for speech recognition
increased order for speaker recognition /verification (typically 19-22)
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Input Speech Features for DNNs

e Commonly-used hand-crafted features

> MFCCs

> Mel-frequency filter bank (FBank)

> Speaker adapted features (FMLLR)

» Appended speaker embedding vectors (i-vectors)

® |et DNNs learn the features

» Power spectra

» Raw audio signals

EECS 6894, Columbia University 7/43



Deep Learning for Computer Vision, Speech, and Language

Two Streams of DNN Acoustic Models

® Hybrid DNNs
» Commonly referred to as DNN-HMM or CD-DNN-HMM
» Use GMM-HMM alignments as labels

» Use dictionary and language model for decoding.

® End-to-end (E2E) DNNs (wiII be addressed in next lecture)
» Directly deal with sequence-to-sequence mapping problem with
unequal consequence lengths

» Do not need alignments, dictionary and language model in
principle.
» Two E2E architectures:
» Connectionist Temporal Classification (CTC)

» Encoder-Decoder Attention models
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GMM-HMM: Forced Alighment
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“How are you”
® Given the text label, how to find the best underlying state
sequence?
» same as decoding except the label is known
> Viterbi algorithm (dynamic programming)
e Often referred to as Viterbi alignments in speech community
® Widely used in deep learning ASR to generate the target
labels for the training data
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Context-Dependent DNNs
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DNN-HMMs: An Typical Training Recipe

® Preparation
> 40-dim FBank features with 4 adjacent frames (input dim = 40x9)
P use an existing model to generate alignments which are then converted to 1-hot
targets from each frame
» create training and validation data sets
> estimate priors p(s) of CD states
® Training
> set DNN configuration (multiple hidden layers, softmax output layers and
cross-entropy loss function)
> initialization
> optimization based on back-prop using SGD on the training set while monitoring
loss on the validation set

» push input features from test utterances through the DNN acoustic model to get
their posteriors

» convert posteriors to likelihoods

> Viterbi decoding on the decoding network

» measure the word error rate
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Training A Hybrid DNN-HMM System

Attila/Kaldi ULEILAL Attila/Kaldi
Tensorflow
feature CD-phones
extraction (classes)
posteriors HMM.
> GMM-HMM | alignments | DNN-HMM »  Viterbi
CD-phone (labels) Decoding
generation
features
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Convolutional Neural Networks (CNNs)

e Bio-inspired feed-forward neural networks*
» individual cortical neurons in visual cortex respond to stimuli in a restricted
region of space known as the receptive field.
> receptive fields of different neurons partially overlap such that they tile the
visual field.
P response of an individual neuron to stimuli within its receptive field can be
approximated mathematically by a convolution operation.
® |eNet-5
» Y. LeCun, L. Bottou, Y. Bengio, P. Haffner (1998). "Gradient-based
learning applied to document recognition," Proc. of the IEEE.
» A 7-layer CNN that outperformed other techniques on a standard
handwritten digit recognition task.
® Advantages:
> Local (sparse) connectivity
» Weight sharing
> translation-invariant

*adapted from wikipedia
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Convolutional Neural Networks (CNNs)

C1: feature maps
6@28x28

INPUT
3232

® Convolutional layers with nonlinearity

2k = U‘((I/V’c * z)ij + bk)

v
+oo  t+oo

W (m,n) *x(m,n) = Z Z z(u, V)W (u —m,v —n)

U=—00 vV=—00

W(m,n) #0 onlyfor 0 <m <M, 0<n<N

® Pooling layers

» subsampling

> typically max-pooling or average-pooling
® Fully connected layers
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Convolutional Neural Networks (CNNs)

Fully Connected
Layers
Max-Pooling
Convolutional Layer
Feature Maps
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Convolutional Neural Networks (CNNs)

Fully Connected
Layers
Max-Pooling
Convolutional Layer
Feature Maps
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shared weights
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Convolutional Neural Networks (CNNs)

Fully Connected
Layers
Max-Pooling
Convolutional Layer
Feature Maps
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Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)

Fully Connected
Layers
Max-Pooling
Convolutional Layer
Feature Maps

EECS 6894, Columbia University 21/43



Deep Learning for Computer Vision, Speech, and Language

Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)
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A Brief Summary of Some CNN Terminology

e feature map
¢ |ocal receptive field (filter or kernel)
® padding
® stride
® convolution
® pooling

» max-pooling

average-pooling

| 2
» pooling along different axes
» resulting different resolutions
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Tensor Representation

Layer 11 Layer |

® weights W24, connecting each unit of the p-th feature map at layer I — 1 and the ¢-th
feature map of layer | with the local receptive filter w(m,n).

® number of parameters in the weights that connect the two convolutional layers is (ignore
biases here)

[Whi| =M x N xPxQ

where M and N are the dimensions of the local receptive filters and P and @ are the
numbers of feature maps in layer [ — 1 and layer [.
e relation of input and output dimensionality
W—K+2P
o=V B+
S
where W is the input dimensionality, O the output dimensionality, K the filter size, P the
padding and S the stride.
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An Example of CNN Acoustic modeling
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Notable Development In CNNs

® AlexNet

> Alex Krizhevsky, llya Sutskever and Geoffrey E. Hinton, "ImageNet Classification with
Deep Convolutional Networks," NIPS 2012.

» 5 conv layers, 3 fully-connected layers, ReLU, max-pooling, dropout, data
augmentation, 2-GPU implementation

® ZFNet
» Matthew D. Zeiler and Rob Fergus, "Visualizing and understanding convolutional
networks." ECCV, 2014.
» similar architecture to AlexNet, reduced window size and stride step in first conv layer.
® VGGNet
» Karen Simonyan and Andrew Zisserman, "Very deep convolutional neural networks for
large-scale image recognition," ICLR 2015.
» up to 19 conv layers — small 3x3 filters with stride 1, padding, 2x2 max-pooling layers
with stride 2 every 2,3 or 4 conv layers
® ResNet
» Kaiming He, Xiangyu Zhang, Shaoging Ren and Jian Sun, "Deep Residual Learning for
Image Recognition," CVPR 2016.
» 152 layers with 3x3 filters
» introduced residual learning by a direct by-pass identity link
® DenseNet
» Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger, "Densely
connected convolutional networks," CVPR 2017.
» do not throw away anything you learn along the way
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VGG Acoustic Modeling

2-conv (classic) 6-conv 8-conv 10-conv

featuremap size
(freq x time)

[Fc #hmm states | [Fc #hmm states |
|
[rozom ] [rozom ]
Crosom ] Crosom ]
=
=
4x8

2x1 pool

2x2 pool

3x3 conv, 64 3x3 conv, 64

3x3 conv, 256
3x3 conv, 256

3x3 conv, 64

input (40x11) input (40x16) input (40x16) input (40x16)

40x 16

T. Sercu, C. Puhrsch, B. Kingsbury and Y. LeCun, "Very Deep Multilingual Convolutional Neural Networks for
LVCSR," ICASSP 2016.
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Recurrent Neural Networks (RNNs)

® Sequential data is
ubiquitous — speech, video,
text, stock index - - -

® Sequence modeling is

crucial — how to model the f
history?
hy = gi(xy, i1, @42, - , 1)

® RNNs model sequences
with shared parameters
(functions)

hy = f(hi—1, 2 0)
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Compact and Unfolded Representations of RNNs

w

compact

oo

v v v
U U U
unfolded

a; = b+ Whtfl + UiBt
ht = tanh(at)
oy =c+ Vht

Y = softmax(oy)
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Some RNN Configurations

1 L1
I

one-to-many mapping — image captioning.
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Some RNN Configurations

1
I 1 1 1

many-to-one mapping — sentiment analysis.

EECS 6894, Columbia University 32/43



Deep Learning for Computer Vision, Speech, and Language

Some RNN Configurations

I
L1 1

synchronized many-to-many mapping — speech recognition, video
labeling.
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Some RNN Configurations

[ L1

asynchronized many-to-many mapping — speech recognition, machine
translation.
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Back-Propagation Through Time (BPTT)

Forward Propagation:

a; = b+ Wht_l + UCCt
h; = tanh(a;)
Oy = C+Vht

Uy = softmaxg (o¢)
K

Ly=— Z Ytk 10g G i
k=1

T
=3¢
t=1
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Back-Propagation Through Time (BPTT)
Parameters to be optimized: W, U, V, b and ¢

387\5\:/ :ZtZ'Lg&/@afﬁ
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which involves gradients of two internal nodes o; and h;.

o oc
80,5 ’ 8ht
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Back-Propagation Through Time (BPTT)

oL _ 09 0L 0L _ .
dor Do 09, 0L, Y

evaluate the gradient of h; backward starting from the last time step T

oL oy 0Ly OL 1 .
Oh ~ Ohy b0y oL, ¥ W vr)

oL - 80,5 oL 8ht+1 oL

dh;  dhydo,  Ohy Ohyiy

daiy1 Ohyyr OL
Ohy Oaiy1 Ohiiq

=VT(g—y)+

oL
vTia T 4 2 . 9%
=V (9 —y:) + W' -diag <1 ht+1) Ohii
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Back-Propagation Through Time (BPTT)

oL _ oL ¢
87W = ;dlag (1 —h?) . aihlt 'ht71

oc . 2y 0L 1
U Xt:dlag (1 — ht) " Oh, - Xy
oL . 9\ 0L
aT:;dlag(l*ht)aih/t

oc oL .t

oV = 2o,

oL oL
9c ~ 290,
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An LSTM Memory Cell

o Ry g hy .,

T
Iy

® input gate: iy = oc(Wigxy + Wiphe—1 + b;)

e forget gate: fi=0(Wgaxy + Wyphyi_1 +by)

e cell candidate: gi = tanh(Wezxy + Werhi—y + be)
e cell: c=fiOc1+10g

® output gate: o, = 0(Wozxy + Wonhi—1 + by)

® hidden state output:  h; = o; ® tanh(c;)
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Unfolded LSTM Representation
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Why LSTMs Work?

8Ct aCt 8ct,1 . 8Ck+1
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® Sepp Horchreiter and Jiirgen Schmidhuber,
"Long Short-Term Memory," Neural
Computation 9, 1997

® a recurrent self-connection with weight 1.0 -

constant error carousel (CEC)

=diag(fi © fi-10--- © frt1)

24
i @(net,) ()

® Felix A. Gers, Jiirgen Schmidhuber and Fred

Cummins. "Learning to Forget: Continual
Prediction with LSTM." Neural Computation

12, 2000
® A forget gate added to learn to reset
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A Bi-directional Multi-layer LSTM for
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A CLSTM for ASR

eoe Ye1 Ye Ve oo
t t t

[ sotmax ] [ somax | [ sommax |

?
[ CONV | eee
t 4 t
coe Xe1 X X1 eee

EECS 6894, Columbia University

43/43



