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Deep Learning for Computer Vision, Speech, and Language

Outline

® End-to-end acoustic modeling
» Connectionist Temporal Classification (CTC)
» Encoder-decoder attention models
® QOther techniques in acoustic modeling
» Data augmentation
» Speaker adaptation (transfer learning)

» Multilingual acoustic modeling
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Two Streams of DNN Acoustic Models

® Hybrid DNNs (discussed last lecture)
» Commonly referred to as DNN-HMM or CD-DNN-HMM
» Use GMM-HMM alignments as labels

» Use dictionary and language model for decoding.
¢ End-to-end (E2E) DNNs

» Directly deal with sequence-to-sequence mapping problem with
unequal sequence lengths
» Do not need alignments, dictionary and language model in
principle.
» Two E2E architectures:
> Connectionist Temporal Classification (CTC)
» Encoder-Decoder Attention models
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Connectionist Temporal Classification (CTC)

Mathematical Formulation:

¢ Input: Observation sequence X = {z1,x9, - , 21}

® Label: Target sequence Z = {z1,29, - ,2u}

® Unequal lengths: M < T

® Model: A neural network with a softmax output layer
Z = N\(X)

® | oss function: Maximum likelihood

A* = argmax log Py (Z|X)
A
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CTC Paths
Allowing blanks and repeated labels (L' = L U {(0})

B(aOaabbdO) = B(OaaOOabb) = ab

Same length as the input sequence
Many-to-one mapping

Likelihood of the path 7 (conditional independency)

T
P(r|X) =]k, vreL”
t=1

where m, = k and y}. is the output of the softmax layer, output
unit k at time ¢.

Likelihood of the label sequence

P(ZIX)= > pxlX)
reB-1(Z)
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The CTC Forward-Backward Algorithm

® Define a modified label sequence Z’
» add blanks to the beginning and the end of the original label
sequence Z

» insert blanks between every pair of labels
> |7 =2|1Z]+1

EECS 6894, Columbia University 6/50



Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

O=z0>»0+40wp00020

X1 X2 X3 Xq X5 Xg X7 Xg Xg X310 X11X12
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The CTC Forward-Backward Algorithm

O=zs0>»040w0Oo0o0z20

X1 X2 X3 X4 X5 X6 X7 X8 X9 X310 X11X12

EECS 6894, Columbia University 8/50



Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm

dzd0r»0+40wpOdo0z0

X1 X2 X3 X4 X5 Xg X7 Xg X9 X310 X11X12

EECS 6894, Columbia University 18/50



Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm

OsO»040wQgo0d=z0O

X1 X2 X3 Xa X5 Xe X7 X8 X9 Xj0 X11X12

EECS 6894, Columbia University 30/50



Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm
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The CTC Forward-Backward Algorithm

® Forward Computation: ai(s) = P(zy - a, m = s|A)
P Initialization

ar(l) =yh, a1(2) =y, ai(s)=0, Vs>2
» Recursion

) log—1(s) + u—1(s = D]yt if z,=0 or z,_,=2.
a(s) = s
! lar—1(8) + a—1(s = 1) + ap—1(s — 2)]yL,, otherwise

» Termination
PZIX) = or(|Z']) + ax (|2 - 1)

e Backward Computation: Bi(s) = P(xy - zr|my = s, A)
» Initialization

B1Z) =yt B2 -1) =y, ar(s) =0, Vs < |Z| -1
> Recursion

Buls) = [Bes1(s) + Bea (s + D]y, , if 2o =0 or 2, =z
‘ [Ber1(s) + art1(s +1) + arp1(s + 2)]yl,,  otherwise
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CTC Maximum Likelihood Optimization

Objective function

S au(s)8i(s)
Lcrec =log PA(Z|X) where P(Z|X) = Z T
s=1 2
Gradient of Lctc with respect to the unnormalized outputs u}c of the network (a.k.a.

the input to the softmax function):

ILcTC ¢ 1 t ¢
=Y — o ()Bi(s) =y — Vi
ol T IP(Z1X) selabz(z,k) t(8)Be(s) =y, — Tk
where
t A ! 1
Y= Plse =kZ'\) = 5 a(s)B(s)
WP ZX) b

Recall for cross-entropy objective function, the gradient with respect to the input to the
softmax:

OLce

t_ ot
ot Yk~ Yk
Ouj,

e soft labels vs. hard labels
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CTC Decoding

Alex Graves mentioned two decoding strategy in his seminal CTC paper

® Best path decoding

where

7 = argmax p(7|X)
TeN?
simply concatenate the most active outputs at each time-step, not
guaranteed to find the most probable labeling
® Prefix search decoding with beam search
> works better practically
> may fail in some cases

*A. Graves, S. Fernandez, F. Gomez and J. Schmidhuber, "Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data with Recurrent Neural Networks", ICML, 2006
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CTC WFST-based Decoding

Weighted Finite State Transducers (WFSTs)
® Token T’

As<eps>

® |exion L

® |anguage G

® Search graph

S =T omin(det(L o G))
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CTC Output Behavior

IS _ F R

L A ff -

0

probability

waveform

*A. Graves and N. Jaitly, "Towards End-to-End Speech Recognition with Recurrent
Neural Networks", ICML, 2014. Adapted.
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Encoder-Decoder Architectures

[ L1

Many-to-many sequence mapping.
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Attention Mechanisms

® Score function:
et = score(s;_1, h;)
e Attention weights:

exp(eri)

Qi = .~
Y1z expler;)

e Context vector:

Ta
et =Y agh;
i=1

*D. Bahdanau, K. Cho and Y. Bengio, "Neural Machine Translation by Jointly Learning to Align and Translate",
ICLR, 2015.
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Some Attention Functions

® Dot-Product-Attention

score(s;—1, h;) = stT_1Wh,-

Additive-Attention

score(sy—1, h;) = 'thanh(Wst,l +Uh; +b)

Location-Based-Attention

F,=K=xa;_1
score(s;_1, hi) = v tanh(Ws,_; + Uh; + VF;; + b)

Multi-Head-Attention
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Decoding in the Encoder-Decoder Architecture

® Decoder as a sequence generation model:

» At each time stamp, the decoder generates a probability
distribution over the vocabulary

P(z|ze—1,- - 21521, %2, , )

» Draw a word from the vocabulary according to the distribution
» Feed it as input to the next time stamp
» Repeat until an <EOS> shows up.

® The goal is to generate the most likely output word sequence
® Solutions

» Simply picking the most likely word at each time stamp is
suboptimal

» Keep multiple hypotheses and conduct the beam search
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Data Augmentation by Label Preserving Transformations

o Artificially augment the training set using replicas of training
samples under certain transformations.

® Make neural networks invariant to such transformations.
® Helpful when training data is limited.
® Some commonly-used approaches

» perturbation of speaking rate
» perturbation of vocal tract length

P voice conversion in some designated feature space by
stochastic mapping

» multi-style training by adding noise
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Adaptation of Acoustic Models — Transfer Learning

A classifier Py(Y|X)

A training population distribution Ps(X)
A test population distribution P(X)
XeR"YeR™

Py(Y|X) is learned from training data under distribution
Py(X)

Same Py(Y'|X) is used for classification on test data under
distribution P;(X)

What happens if Ps(X) # P(X)?
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Distribution Mismatch In Transfer Learning

\ 4

EECS 6894, Columbia University 44/50



Deep Learning for Computer Vision, Speech, and Language

Why Adaptation Is Needed In Acoustic Modeling

® Speech signals are affected by a variety of variabilities

» speaker
P> environment

» channel

® An important issue to deal with in acoustic modeling

P a test speech signal may come from a sparse region of the
training distribution, which may give rise to performance
degradation

» adaptation or adaptive training is constantly pursued to
mitigate the distribution mismatch
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Adaptation of DNN-HMMs
® \What did we do in GMM-HMMs?

> elegant mathematical models (MLLR, fMLLR, MAP,
eigenVoice, ...... )

» exploit the generative structure of GMM-HMM for parameter
tying
® What's the challenge of adapting DNN-HMMs?

» substantial number of parameters — data sparsity seems to
always be the issue for DNN adaptation

» lack of a generative structure for parameter tying

» unsupervised adaptation, which is preferred in practice, makes
it even harder due to the strong discriminative nature of DNNs.

» catastrophic forgetting
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Some Commonly-used Techniques for DNN Adaptation

® Use speaker-adapted input features (e.g. fMLLR, VTL-warped
logMEL)
® Fine-tune the whole network with a small learning rate
® Fine-tune or retrain a selected subset of the network parameters
» input/output/hidden layer(s)
» SVD factorization of the output layer (m>n, n>>k)

T T
Wisin = UnxmZmxn Vasn & Unxk ik Vaxk = UmxkNisxn

Wsin = UnxiSiockNixa

® Learning hidden unit contributions (LHUC)
al = w4, 2 =a0 o (al)
J

» motivated a family of parameterized activation functions
® Speaker-aware training based on i-vectors

z [z, €]
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Some Commonly-used Techniques for DNN Adaptation
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Multilingual Acoustic Modeling

e QOftentimes, to build an ASR system, the acoustic resources
for a particular language or a particular domain is limited.

® Universal acoustic representations can significantly help this
situation.
P> mitigate sparse data issue

» better performance
» faster system turn-around
® Multilingual acoustic modeling

» Learning feature representations of universal acoustic
characteristics from numerous languages

» deep learning is especially suitable for multilingual acoustic
modeling
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A Case Study of Multilingual Feature Extraction

® 24 languages under the IARPA Babel program

® Cantonese, Assamese, Bengali, Pashto, Turkish, Tagalog, Vietnamese, Haitian Creole,
Swahili, Lao, Tamil, Kurmanji Kurdish, Zulu, Tok Pisin, Cebuano, Kazakh, Telugu,
Lithuanian, Amharic, Dholuo, Guarani, Igbo, Javanese, Mongolian.

® 40-70 hours of labeled speech data from each language.

CAN BEN TUR | eee | MON CAN BEN TUR | ese | MON

T il

fully connected layer fully connected layer

T
il

bn(t-10) | [Tons) | [ bn® | [[bn5) | [(bnc=10)

T

fully connected layers

CNN layers

¢log-Mel

‘ log-Mel ‘

¢clog-Mel ‘
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