
Deep Learning for Automatic Speech
Recognition – Part III

Xiaodong Cui

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

Fall, 2018

Deep Learning for Computer Vision, Speech, and Language

Outline

• End-to-end acoustic modeling

I Connectionist Temporal Classification (CTC)

I Encoder-decoder attention models

• Other techniques in acoustic modeling

I Data augmentation

I Speaker adaptation (transfer learning)

I Multilingual acoustic modeling

EECS 6894, Columbia University 2/50

Deep Learning for Computer Vision, Speech, and Language

Two Streams of DNN Acoustic Models

• Hybrid DNNs (discussed last lecture)
I Commonly referred to as DNN-HMM or CD-DNN-HMM
I Use GMM-HMM alignments as labels
I Use dictionary and language model for decoding.

• End-to-end (E2E) DNNs
I Directly deal with sequence-to-sequence mapping problem with

unequal sequence lengths
I Do not need alignments, dictionary and language model in

principle.
I Two E2E architectures:

I Connectionist Temporal Classification (CTC)
I Encoder-Decoder Attention models

EECS 6894, Columbia University 3/50

Deep Learning for Computer Vision, Speech, and Language

Connectionist Temporal Classification (CTC)

Mathematical Formulation:

• Input: Observation sequence X = {x1, x2, · · · , xT}

• Label: Target sequence Z = {z1, z2, · · · , zM}

• Unequal lengths: M < T

• Model: A neural network with a softmax output layer

Z = Nλ(X)

• Loss function: Maximum likelihood

λ∗ = argmax
λ

logPλ(Z|X)

EECS 6894, Columbia University 4/50

Deep Learning for Computer Vision, Speech, and Language

CTC Paths
• Allowing blanks and repeated labels (L′ = L ∪ {�})

B(a�aabb��) = B(�aa��abb) = ab

• Same length as the input sequence
• Many-to-one mapping
• Likelihood of the path π (conditional independency)

P (π|X) =
T∏
t=1

ytπt
, ∀π ∈ L′T

where πt = k and ytk is the output of the softmax layer, output
unit k at time t.
• Likelihood of the label sequence

P (Z|X) =
∑

π∈B−1(Z)

p(π|X)

EECS 6894, Columbia University 5/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

• Define a modified label sequence Z ′
I add blanks to the beginning and the end of the original label

sequence Z
I insert blanks between every pair of labels
I |Z ′| = 2|Z|+ 1

EECS 6894, Columbia University 6/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 7/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 8/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 9/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 10/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 11/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 12/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 13/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 14/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 15/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 16/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 17/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 18/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 19/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 20/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 21/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 22/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 23/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 24/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 25/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 26/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 27/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 28/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 29/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 30/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 31/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm

EECS 6894, Columbia University 32/50

Deep Learning for Computer Vision, Speech, and Language

The CTC Forward-Backward Algorithm
• Forward Computation: αt(s) = P (x1 · · ·xt, πt = s|λ)
I Initialization

α1(1) = y1
�, α1(2) = y1

z1
, α1(s) = 0, ∀s > 2

I Recursion

αt(s) =
{

[αt−1(s) + αt−1(s− 1)]yt
z′s
, if z′s = � or z′s−2 = z′s.

[αt−1(s) + αt−1(s− 1) + αt−1(s− 2)]yt
z′s
, otherwise

I Termination

P (Z|X) = αT(|Z ′|) + αT(|Z ′| − 1)

• Backward Computation: βt(s) = P (xt · · ·xT|πt = s, λ)
I Initialization

βT(|Z ′|) = yT
�, βT(|Z ′| − 1) = yT

z|Z|
, αT(s) = 0, ∀s < |Z ′| − 1

I Recursion

βt(s) =
{

[βt+1(s) + βt+1(s+ 1)]yt
z′s
, if z′s = � or z′s+2 = z′s.

[βt+1(s) + αt+1(s+ 1) + αt+1(s+ 2)]yt
z′s
, otherwise

EECS 6894, Columbia University 33/50

Deep Learning for Computer Vision, Speech, and Language

CTC Maximum Likelihood Optimization
Objective function

LCTC = logPλ(Z|X) where P (Z|X) =
|Z′|∑
s=1

αt(s)βt(s)
ytz′s

Gradient of LCTC with respect to the unnormalized outputs utk of the network (a.k.a.
the input to the softmax function):

∂LCTC
∂utk

= ytk −
1

ytkP (Z|X)
∑

s∈lab(Z,k)
αt(s)βt(s) = ytk − γtk

where

γtk , P (st = k|Z ′, λ) = 1
ytkP (Z|X)

∑
s∈lab(Z′,k)

αt(s)βt(s)

Recall for cross-entropy objective function, the gradient with respect to the input to the
softmax:

∂LCE
∂utk

= ytk − ȳtk

• soft labels vs. hard labels

EECS 6894, Columbia University 34/50

Deep Learning for Computer Vision, Speech, and Language

CTC Decoding
Alex Graves mentioned two decoding strategy in his seminal CTC paper
• Best path decoding

h(X) ≈ B(π∗)

where

π∗ = argmax
π∈Nt

p(π|X)

simply concatenate the most active outputs at each time-step, not
guaranteed to find the most probable labeling
• Prefix search decoding with beam search
I works better practically
I may fail in some cases

*A. Graves, S. Fernandez, F. Gomez and J. Schmidhuber, "Connectionist Temporal Classification:
Labelling Unsegmented Sequence Data with Recurrent Neural Networks", ICML, 2006

EECS 6894, Columbia University 35/50

Deep Learning for Computer Vision, Speech, and Language

CTC WFST-based Decoding
Weighted Finite State Transducers (WFSTs)
• Token T

• Lexion L

• Language G

• Search graph

S = T ◦min(det(L ◦G))

EECS 6894, Columbia University 36/50

Deep Learning for Computer Vision, Speech, and Language

CTC Output Behavior

*A. Graves and N. Jaitly, "Towards End-to-End Speech Recognition with Recurrent
Neural Networks", ICML, 2014. Adapted.

EECS 6894, Columbia University 37/50

Deep Learning for Computer Vision, Speech, and Language

Encoder-Decoder Architectures

Many-to-many sequence mapping.

EECS 6894, Columbia University 38/50

Deep Learning for Computer Vision, Speech, and Language

Attention Mechanisms
• Score function:

eti = score(st−1,hi)

• Attention weights:

αti = exp(eti)∑Tx
j=1 exp(etj)

• Context vector:

ct =
Tx∑
i=1

αtihi

*D. Bahdanau, K. Cho and Y. Bengio, "Neural Machine Translation by Jointly Learning to Align and Translate",
ICLR, 2015.

EECS 6894, Columbia University 39/50

Deep Learning for Computer Vision, Speech, and Language

Some Attention Functions

• Dot-Product-Attention

score(st−1,hi) = sT
t−1Whi

• Additive-Attention

score(st−1,hi) = vTtanh(Wst−1 + Uhi + b)

• Location-Based-Attention

Ft = K ∗αt−1

score(st−1,hi) = vTtanh(Wst−1 + Uhi + VFt,i + b)

• Multi-Head-Attention

EECS 6894, Columbia University 40/50

Deep Learning for Computer Vision, Speech, and Language

Decoding in the Encoder-Decoder Architecture

• Decoder as a sequence generation model:
I At each time stamp, the decoder generates a probability

distribution over the vocabulary

P (zt|zt−1, · · · , z1;x1, x2, · · · , xT)

I Draw a word from the vocabulary according to the distribution
I Feed it as input to the next time stamp
I Repeat until an <EOS> shows up.

• The goal is to generate the most likely output word sequence
• Solutions
I Simply picking the most likely word at each time stamp is

suboptimal
I Keep multiple hypotheses and conduct the beam search

EECS 6894, Columbia University 41/50

Deep Learning for Computer Vision, Speech, and Language

Data Augmentation by Label Preserving Transformations

• Artificially augment the training set using replicas of training
samples under certain transformations.

• Make neural networks invariant to such transformations.

• Helpful when training data is limited.

• Some commonly-used approaches

I perturbation of speaking rate
I perturbation of vocal tract length
I voice conversion in some designated feature space by

stochastic mapping
I multi-style training by adding noise

EECS 6894, Columbia University 42/50

Deep Learning for Computer Vision, Speech, and Language

Adaptation of Acoustic Models – Transfer Learning

• A classifier Pθ(Y |X)
A training population distribution Ps(X)
A test population distribution Pt(X)
X ∈ Rn, Y ∈ Rm

• Pθ(Y |X) is learned from training data under distribution
Ps(X)

• Same Pθ(Y |X) is used for classification on test data under
distribution Pt(X)

• What happens if Ps(X) 6= Pt(X)?

EECS 6894, Columbia University 43/50

Deep Learning for Computer Vision, Speech, and Language

Distribution Mismatch In Transfer Learning

Ps(x) Pt(x)

EECS 6894, Columbia University 44/50

Deep Learning for Computer Vision, Speech, and Language

Why Adaptation Is Needed In Acoustic Modeling

• Speech signals are affected by a variety of variabilities
I speaker
I environment
I channel
I

• An important issue to deal with in acoustic modeling
I a test speech signal may come from a sparse region of the

training distribution, which may give rise to performance
degradation

I adaptation or adaptive training is constantly pursued to
mitigate the distribution mismatch

EECS 6894, Columbia University 45/50

Deep Learning for Computer Vision, Speech, and Language

Adaptation of DNN-HMMs
• What did we do in GMM-HMMs?
I elegant mathematical models (MLLR, fMLLR, MAP,

eigenVoice,)
I exploit the generative structure of GMM-HMM for parameter

tying

• What’s the challenge of adapting DNN-HMMs?
I substantial number of parameters → data sparsity seems to

always be the issue for DNN adaptation
I lack of a generative structure for parameter tying
I unsupervised adaptation, which is preferred in practice, makes

it even harder due to the strong discriminative nature of DNNs.
I catastrophic forgetting

EECS 6894, Columbia University 46/50

Deep Learning for Computer Vision, Speech, and Language

Some Commonly-used Techniques for DNN Adaptation
• Use speaker-adapted input features (e.g. fMLLR, VTL-warped
logMEL)
• Fine-tune the whole network with a small learning rate
• Fine-tune or retrain a selected subset of the network parameters
I input/output/hidden layer(s)
I SVD factorization of the output layer (m>n, n�k)

Wm×n = Um×mΣm×nVT
n×n ≈ Um×kΣk×kVT

n×k = Um×kNk×n

W̃m×n = Um×kSk×kNk×n

• Learning hidden unit contributions (LHUC)

a(l)
i =

∑
j

w(l)
ij z

(l−1)
j + b(l)

i , z(l)
i = γ(l)

i · σ
(
a(l)

i

)
I motivated a family of parameterized activation functions

• Speaker-aware training based on i-vectors

x 7→ [x, e]

EECS 6894, Columbia University 47/50

Deep Learning for Computer Vision, Speech, and Language

Some Commonly-used Techniques for DNN Adaptation

EECS 6894, Columbia University 48/50

Deep Learning for Computer Vision, Speech, and Language

Multilingual Acoustic Modeling
• Oftentimes, to build an ASR system, the acoustic resources
for a particular language or a particular domain is limited.

• Universal acoustic representations can significantly help this
situation.
I mitigate sparse data issue
I better performance
I faster system turn-around

• Multilingual acoustic modeling
I Learning feature representations of universal acoustic

characteristics from numerous languages
I deep learning is especially suitable for multilingual acoustic

modeling

EECS 6894, Columbia University 49/50

Deep Learning for Computer Vision, Speech, and Language

A Case Study of Multilingual Feature Extraction
• 24 languages under the IARPA Babel program
• Cantonese, Assamese, Bengali, Pashto, Turkish, Tagalog, Vietnamese, Haitian Creole,

Swahili, Lao, Tamil, Kurmanji Kurdish, Zulu, Tok Pisin, Cebuano, Kazakh, Telugu,
Lithuanian, Amharic, Dholuo, Guarani, Igbo, Javanese, Mongolian.
• 40-70 hours of labeled speech data from each language.

EECS 6894, Columbia University 50/50

