Sequence-to-Sequence Architectures

Kapil Thadani kapil@cs.columbia.edu

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

Previously: processing text with RNNs

Inputs

- $\cdot\,$ One-hot vectors for words/characters/previous output
- · Embeddings for words/sentences/context
- · CNN over characters/words/sentences

Recurrent layers

- · Forward, backward, bidirectional, deep
- $\cdot\,$ Activations: $\sigma,$ tanh, gated (LSTM, GRU), ReLU initialized with identity

Outputs

- \cdot Softmax over words/characters/labels
- · Absent (i.e., pure encoders)

うして ふゆ く 山 マ ふ し マ うくの

Outline

• Machine translation

- $\cdot\,$ Phrase-based MT
- · Encoder-decoder architecture
- \circ Attention
 - Mechanism
 - \cdot Visualizations
 - Variants
 - \cdot Transformers
- Decoding large vocabularies
 - · Alternatives
 - · Copying
- Autoencoders
 - Denoising autoencoders
 - · Variational autoencoders (VAEs)

"One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode."

> - Warren Weaver Translation (1955)

The MT Pyramid

Source

Target

Tomorrow I will fly to the conference in Canada

Morgen fliege Ich nach Kanada zur Konferenz

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Phrase-based MT

- 1. Collect bilingual dataset $\langle S_i, T_i \rangle \in \mathcal{D}$
- 2. Unsupervised phrase-based alignment
 - phrase table π
- 3. Unsupervised n-gram language modeling
 - \blacktriangleright language model ψ
- 4. Supervised decoder
 - parameters θ

$$\widehat{T} = \underset{T}{\operatorname{arg\,max}} p(T|S)$$
$$= \underset{T}{\operatorname{arg\,max}} p(S|T, \pi, \theta) \cdot p(T|\psi)$$

<ロト < 部 ト < 注 ト < 注 ト 三 の < ()</p>

Neural MT

1. Collect bilingual dataset $\langle S_i, T_i \rangle \in \mathcal{D}$

- 2. Unsupervised phrase-based alignment
 - phrase table π
- Unsupervised n-gram language modeling
 ▶ language model ψ
- 4. Supervised encoder-decoder framework
 - parameters θ

RNN

Input words x_1, \ldots, x_n Output label z

gated activations

8

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Deep RNN

Input words x_1, \ldots, x_n

 $\textbf{Output} \hspace{0.1 in } \textbf{label} \hspace{0.1 in } z$

8

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Bidirectional RNN

Input words x_1, \ldots, x_n

Output label z

RNN encoder

Input words x_1, \ldots, x_n

Output encoding c

- ロ > - 4 日 > - 4 0 =

RNN language model

Input words y_1, \ldots, y_k Output following words y_k, \ldots, y_m

RNN decoder

Input context c

Output words y_1, \ldots, y_m

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

RNN decoder

Input context c

Output words y_1, \ldots, y_m

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

Sutskever, Vinyals & Le (2014)

Sequence to Sequence Learning with Neural Networks

10

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sutskever, Vinyals & Le (2014)

・ロト ・ 理ト ・ ヨト ・ ヨト

3

Dac

Sequence to Sequence Learning with Neural Networks

Produces a fixed length representation of input

 \cdot "sentence embedding" or "thought vector"

Sutskever, Vinyals & Le (2014)

Sequence to Sequence Learning with Neural Networks

Produces a fixed length representation of input

 \cdot "sentence embedding" or "thought vector"

Sutskever, Vinyals & Le (2014)

Sequence to Sequence Learning with Neural Networks

LSTM units do not solve vanishing gradients

- Poor performance on long sentences
- Need to reverse the input

test BLEU score (ntst14)
28.45
33.30
26.17
30.59

Bahdanau et al (2015)

Bahdanau et al (2015)

Bahdanau et al (2015)

14

- · Bidirectional encoder, GRU activations
- \cdot Softmax for y_i depends on y_{i-1} and an additional hidden layer

- + Backprop directly to attended regions, avoiding vanishing gradients
- + Can visualize attention weights α_{ij} to interpret prediction
- Inference is $\mathcal{O}(mn)$ instead of $\mathcal{O}(m)$ for seq-to-seq

Bahdanau et al (2015)

Neural Machine Translation by Jointly Learning to Align and Translate

Improved results on long sentences

15

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ = 三 - のへで

Bahdanau et al (2015)

Neural Machine Translation by Jointly Learning to Align and Translate

Sensible induced alignments

▲ロト ▲昼 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 = のへ⊙

Bahdanau et al (2015)

Neural Machine Translation by Jointly Learning to Align and Translate

Sensible induced alignments

Given a premise, e.g.,

The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure. LexCorp had been an employee-owned concern since 2008.

and a hypothesis, e.g., BMI acquired an American company.

(1)

イロア 人口 ア イヨア イヨア コー ろくぐ

predict whether the premise

- <u>entails</u> the hypothesis
- <u>contradicts</u> the hypothesis
- o or remains <u>neutral</u>

Given a premise, e.g.,

The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure. LexCorp had been an employee-owned concern since 2008.

and a hypothesis, e.g.,

BMI bought employee-owned LexCorp for \$3.4Bn.

(2)

イロア 人口 ア イヨア イヨア コー ろくぐ

predict whether the premise

- <u>entails</u> the hypothesis
- <u>contradicts</u> the hypothesis
- o or remains <u>neutral</u>

Given a premise, e.g.,

The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure. LexCorp had been an employee-owned concern since 2008.

and a hypothesis, e.g.,

BMI is an employee-owned concern.

predict whether the premise

- o entails the hypothesis
- <u>contradicts</u> the hypothesis
- o or remains <u>neutral</u>

(3)

Rocktäschel et al (2016)

Reasoning about Entailment with Neural Attention

Attention conditioned on h_T

Rocktäschel et al (2016)

Reasoning about Entailment with Neural Attention

Attention conditioned on h_1, \ldots, h_T : Synonymy, importance

Rocktäschel et al (2016)

Attention conditioned on h_1, \ldots, h_T : Relatedness ・ロト ・ 日 ・ モ ・ ト ・ 日 ・ つへぐ

¹⁸ Rocktäschel et al (2016)

Reasoning about Entailment with Neural Attention

イロト イポト イヨト イヨト

3

Sac

(g)

Attention conditioned on h_1, \ldots, h_T : Many:one

Self-attention

¹⁹ Cheng et al (2016)

Long Short-Term Memory-Networks for Machine Reading

The FBI is chasing a criminal on the run.							
The FBI is chasing a criminal on the run.							
The FBI is chasing a criminal on the run.							
The FBI	is	chasing a criminal on the run.					
The FBI	is	chasing a criminal on the run.					
The FBI	is	chasing a criminal on the run.					
The FBI	is	chasing a criminal on the run.					
The FBI	is	chasing a criminal on the run.					
The FBI	is	chasing a criminal on the run.					
The FBI	is	chasing a criminal on the run					

Attention over images

Xu et al (2015)

Show, Attend & Tell: Neural Image Caption Generation with Visual Attention

with(0.28)

the(0.21)

a(0.30)

mountain(0.44)

(b) A stop sign is on a road with a mountain in the background.

Attention over videos

21 Yao et al (2015) Describing Videos by Exploiting Temporal Structure

Attention variants

 $c = \text{ATTENTION}(\text{query } q, \text{ keys } k_1 \dots k_n)$

$$\begin{aligned} \alpha_i &= \mathsf{softmax}(\mathsf{score}(q,k_i)) \\ c &= \sum_i \alpha_i, k_i \end{aligned}$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Attention variants

 $c = \text{ATTENTION}(\text{query } q, \text{keys } k_1 \dots k_n, \text{values } v_1 \dots v_n)$

e.g., memory networks (Weston et al, 2015; Sukhbataar et al, 2015)

$$\begin{split} \alpha_i &= \mathsf{softmax}(\mathsf{score}(q,k_i)) \\ c &= \sum_i \alpha_i, \pmb{v_i} \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

イロア 人口 ア イヨア イヨア コー ろくぐ

MemN2N (Sukhbataar et al, 2015)

- + Soft attention over memories
- + Multiple memory lookups (hops)
- + End-to-end training

Attention scoring functions

• Additive (Bahdanau et al, 2015)

$$\mathsf{score}(q,k) = \mathbf{u}^{\top}\mathsf{tanh}(\mathbf{W}[q;k])$$

• Multiplicative (Luong et al, 2015)

$$\mathsf{score}(q,k) = q^\top \pmb{W} k$$

• Scaled dot-product (Vaswani et al, 2017)

$$\operatorname{score}(q,k) = \frac{q^{\top}k}{\sqrt{d_k}}$$

イロア 人口 ア イロア イロア イロア うくろ

Attention variants

- Stochastic hard attention (Xu et al, 2015)
- Local attention (Luong et al, 2015)
- Monotonic attention (Yu et al, 2016; Raffel et al, 2017)
- Self attention (Cheng et al, 2016; Vaswani et al, 2017)
- Convolutional attention (Allamanis et al, 2016)
- Structured attention (Kim et al, 2017)
- Multi-headed attention (Vaswani et al, 2017)

Vaswani et al (2017)

26

Attention is All You Need

RNN encoder

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Vaswani et al (2017)

Attention is All You Need

RNN encoder with attention

<ロト < 団ト < 巨ト < 巨ト = 三 のへで</p>

Vaswani et al (2017)

Attention is All You Need

Deep encoder with self-attention

▲ロト ▲昼 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 = のへで

26 Vaswani et al (2017) Attention is All You Need

Deep encoder with multi-head self-attention

▲ロト ▲昼 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 = のへで

Vaswani et al (2017)

Attention is All You Need

27

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Vaswani et al (2017)

Attention is All You Need

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- · Self-attention at every layer instead of recurrence
 - Quadratic increase in computation for each hidden state
 - + Inference can be parallelized
- \cdot No sensitivity to input position
 - Positional embeddings required
 - + Can apply to sets
- $\cdot\,$ Deep architecture (6 layers) with multi-head attention
 - + Higher layers appear to learn linguistic structure
- · Scaled dot-product attention with masking
 - + Avoids bias in simple dot-product attention
 - + Fewer parameters needed for rich model
- \cdot Improved runtime and performance on translation, parsing, etc

Vaswani et al (2017)

Attention is All You Need

Vaswani et al (2017)

Attention is All You Need

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - - - のへで

Vaswani et al (2017)

Attention is All You Need

The	The					
Law	Law					
will	will					
never	never					
be	be					
perfect	perfect					
,	,					
but	but					
its	its					
application -	application					
should	should					
be	be					
just	just					
-	-					
this	this					
is	is					
what	what					
we	we					
are	are					
missing	missing					
,	,					
in	in					
my	my					
opinion	opinion					
<eos></eos>	<eos></eos>					
<pad></pad>	<pad></pad>	- ₽ →	≣ >	Ξı	Ξ	$\mathcal{O} \land \mathcal{O}$

Vaswani et al (2017)

Attention is All You Need

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

Vaswani et al (2017)

Attention is All You Need

1 ト ・ 母 ト ・ 王 ト ・ 王 ・ の へ ()・

Sequence-to-sequence models can typically scale to 30K-50K words

But real-world applications need at least 500K-1M words

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Large vocabularies

Alternative 1: Hierarchical softmax

- \cdot Predict path in binary tree representation of output layer
- · Reduces to $\log_2(V)$ binary decisions

$$p(w_t = \text{``dog''}|\cdots) = (1 - \sigma(U_0 h_t)) \times \sigma(U_1 h_t) \times \sigma(U_4 h_t)$$

Large vocabularies

Jean et al (2015)

On Using Very Large Target Vocabulary for Neural Machine Translation

Alternative 2: Importance sampling

 $\cdot\,$ Expensive to compute the softmax normalization term over V

$$p(y_i = w_j | y_{< i}, x) = \frac{\exp\left(W_j^\top f(s_i, y_{i-1}, c_i)\right)}{\sum_{k=1}^{|V|} \exp\left(W_k^\top f(s_i, y_{i-1}, c_i)\right)}$$

- $\cdot\,$ Use a small subset of the target vocabulary for each update
- · Approximate expectation over gradient of loss with fewer samples
- Partition the training corpus and maintain local vocabularies in each partition to use GPUs efficiently

³³ Sennrich et al (2016)

・ロト ・ 中 ・ エ ・ ・ エ ・ うくつ

Neural Machine Translation of Rare Words with Subword Units

Alternative 3: Subword units

· Reduce vocabulary by replacing infrequent words with sub-words

Jet makers feud over seat width with big orders at stake

\Downarrow

- _J et __makers __fe ud __over __seat __width __with __big __orders __at __stake
 - Code for byte-pair encoding (BPE): https://github.com/rsennrich/subword-nmt

Gu et al (2016)

34

Incorporating Copying Mechanism in Sequence-to-Sequence Learning

In monolingual tasks, copy rare words directly from the input

 $\cdot\,$ Generation via standard attention-based decoder

$$\psi_g(y_i = w_j) = W_j^\top f(s_i, y_{i-1}, c_i) \qquad w_j \in V$$

· Copying via a non-linear projection of input hidden states

$$\psi_c(y_i = x_j) = \tanh(h_j^\top U) f(s_i, y_{i-1}, c_i) \qquad x_j \in X$$

 $\cdot\,$ Both modes compete via the softmax

$$p(y_i = w_j | y_{< i}, x) = \frac{1}{Z} \left(\exp\left(\psi_g(w_j)\right) + \sum_{k: x_k = w_j} \exp\left(\psi_c(x_k)\right) \right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Gu et al (2016)

35

Incorporating Copying Mechanism in Sequence-to-Sequence Learning

$$\frac{1}{z} \sum_{x_j} \exp[\psi_c(x_j)] | x_j = y_t$$

$$\frac{1}{z} \exp[\psi_g(v_i)] | v_i = y_t$$

$$X \cap V \quad V$$

$$\frac{1}{z} \sum_{x_j} \exp[\psi_c(x_j)] + \exp[\psi_g(v_i)] | x_j = y_t, v_i = y_t$$

$$\frac{1}{z} \exp[\psi_g(u_i)] + \exp[\psi_g(v_i)] | x_j = y_t, v_i = y_t$$

Decoding probability $p(y_t|\cdots)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Gu et al (2016)

Incorporating Copying Mechanism in Sequence-to-Sequence Learning

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

See et al (2017)

Get to the Point: Summarization with Pointer Generator Networks

Attention for common words

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

See et al (2017)

Get to the Point: Summarization with Pointer Generator Networks

イロト イ理ト イヨト イ

 Sac

Copying from input for rarer words

Autoencoders

Given input $\boldsymbol{x},$ learn an encoding \boldsymbol{z} that can be decoded to reconstruct \boldsymbol{x}

For sequence input x_1, \ldots, x_n , can use standard MT models \cdot Is attention viable?

+ Useful for pre-training text classifiers (Dai et al, 2015)

イロア 人口 ア イロア イロア イロア うくろ

Denoising autoencoders

Hill et al (2016)

38

200

Learning Distributed Representations of Sentences from Unlabeled Data

Given noisy input $\tilde{x},$ learn an encoding z that can be decoded to reconstruct x

Noise: drop words or swap two words with some probability

- + Helpful as features for a linear classifier
- + Can learn sentence representations without sentence order

Query	If he had a weapon, he could maybe take out their last imp, and then beat up Errol and Vanessa.	An annoying buzz started to ring in my ears, becoming louder and louder as my vision began to swim.
CBOW	Then Rob and I would duke it out, and every	Louder.
CDOM	once in a while, he would actually beat me.	
Skip	If he could ram them from behind, send them saling over	A weighty pressure landed on my lungs and my vision blurred
Thought	the far side of the levee, he had a chance of stopping them.	at the edges, threatening my consciousness altogether.
EastSant	Isak's close enough to pick off any one of them,	The noise grew louder, the quaking increased as the
Pastoent	maybe all of them, if he had his rifle and a mind to.	sidewalk beneath my feet began to tremble even more.
SDAE	He'd even killed some of the most dangerous criminals	I smile because I'm familiar with the knock,
SDAL	in the galaxy, but none of those men had gotten to him like Vitktis.	pausing to take a deep breath before dashing down the stairs.
DictRep	Kevin put a gun to the man's head, but even though	Then gradually I began to hear a ringing in my ears.
(FF+embs.)	he cried, he couldn't tell Kevin anything more.	
Paragraph	I take a deep breath and open the doors.	They listened as the motorcycle-like roar
Vector (DM)		of an engine got louder and louder then stopped.

Table 5: Sample nearest neighbour queries selected from a randomly sampled 0.5m sentences of the Toronto Books Corpus.

Variational autoencoders (VAEs)

Kingma & Welling (2014)

Auto-encoding Variational Bayes

イロア 人口 ア イロア イロア イロア うくろ

Autoencoders often don't generalize well to new data, noisy representations

Approximate the posterior p(z|x) with variational inference

- · Encoder: induce q(z|x) with parameters θ
- Decoder: sample z and reconstruct x with parameters ϕ
- Loss:

$$\ell_i = -\mathbb{E}_{z \sim q_\theta(z|x_i)} \log p_\phi(x_i|z) + \mathrm{KL}\left(q_\theta(z|x_i)||p(z)\right)$$

Estimate gradients using reparameterization trick for Gaussians

$$z \sim \mathcal{N}(\mu, \sigma^2) = \mu + \sigma \times [z' \sim \mathcal{N}(0, 1)]$$

Variational autoencoders (VAEs)

Bowman et al (2016)

Generating Sentences from a Continuous Space

+ Better at word imputation than RNNs

+ Can interpolate smoothly between representations in the latent space

" i want to talk to you . " "i want to be with you . " "i do n't want to be with you . " i do n't want to be with you . she did n't want to be with him . <u>he was silent for a long moment .</u> he was silent for a moment . it was quiet for a moment . it was dark and cold . there was a pause . it was my turn .	 i waited for what had happened. it was almost thirty years ago. it was over thirty years ago. that was six years ago. the had died two years ago. ten, thirty years ago. " it 's all right here. " everything is all right here. " it 's all right here. it 's all right here. it 's all right here. we are all right here. come here in five minutes. 					
this was the only way . it was the only way . it was her turn to blink . it was hard to tell . it was time to move on . he had to do it again . they all looked at each other . they all turned to look back . they both turned and walked away .	there is no one else in the world . there is no one else in sight . they were the only ones who mattered . they were the only ones left . he had to be with me . she had to be with him . i had to do this . i wanted to kill him . i started to cry . i turned to him .					