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Previously: processing text with RNNs

Inputs
· One-hot vectors for words/characters/previous output
· Embeddings for words/sentences/context

· CNN over characters/words/sentences
...

Recurrent layers
· Forward, backward, bidirectional, deep
· Activations: σ, tanh, gated (LSTM, GRU), ReLU initialized with identity

...

Outputs
· Softmax over words/characters/labels

· Absent (i.e., pure encoders)
...
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Outline

◦ Machine translation
· Phrase-based MT
· Encoder-decoder architecture

◦ Attention
· Mechanism
· Visualizations
· Variants
· Transformers

◦ Decoding large vocabularies
· Alternatives
· Copying

◦ Autoencoders
· Denoising autoencoders
· Variational autoencoders (VAEs)
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Machine Translation

“One naturally wonders if the problem of translation could conceivably be
treated as a problem in cryptography. When I look at an article in
Russian, I say: ’This is really written in English, but it has been coded in
some strange symbols. I will now proceed to decode.”

— Warren Weaver
Translation (1955)
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The MT Pyramid

an
aly
sis

generation

Source Target

Interlingua

lexical

syntactic

semantic

pragmatic



6

Phrase-based MT

Tomorrow I will fly to the conference in Canada

Morgen fliege Ich nach Kanada zur Konferenz
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Phrase-based MT

Tomorrow I will fly to the conference in Canada

Morgen fliege Ich nach Kanada zur Konferenz
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Phrase-based MT

1. Collect bilingual dataset 〈Si, Ti〉 ∈ D

2. Unsupervised phrase-based alignment
I phrase table π

3. Unsupervised n-gram language modeling
I language model ψ

4. Supervised decoder
I parameters θ T̂ = argmax

T
p(T |S)

= argmax
T

p(S|T, π, θ) · p(T |ψ)
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Neural MT

1. Collect bilingual dataset 〈Si, Ti〉 ∈ D

2. Unsupervised phrase-based alignment
I phrase table π

3. Unsupervised n-gram language modeling
I language model ψ

4. Supervised encoder-decoder framework
I parameters θ
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RNN

Input words x1, . . . , xn

Output label z

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

gated activations softmax

z
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Deep RNN

Input words x1, . . . , xn

Output label z

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

...
...

...
...

...

h′1 h′2 h′3 h′4 . . . h′n z
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Bidirectional RNN

Input words x1, . . . , xn

Output label z

x1 x2 x3 x4 . . . xn

−→
h1

−→
h2

−→
h3

−→
h4

. . . −→
hn

←−
h1

←−
h2

←−
h3

←−
h4

. . . ←−
hn

z
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RNN encoder

Input words x1, . . . , xn

Output encoding c

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

c
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RNN language model

Input words y1, . . . , yk

Output following words yk, . . . , ym

. . .

y1 y2 y3 y4 y5

s1 s2 s3 s4 s5 . . .
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RNN decoder

Input context c

Output words y1, . . . , ym

. . .

y1 y2 y3 y4 y5

s1 s2 s3 s4 s5 . . .

c s1 = c
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RNN decoder

Input context c

Output words y1, . . . , ym

. . .

y1 y2 y3 y4 y5

s1 s2 s3 s4 s5 . . .

c si = f(si−1, yi−1, c)
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Sequence-to-sequence learning Sutskever, Vinyals & Le (2014)
Sequence to Sequence Learning with Neural Networks

Input words x1, . . . , xk

Output words y1, . . . , ym

x1 x2 x3 . . . xn

h1 h2 h3 . . . hn

. . .

y1 y2 y3 y4 y5

s1 s2 s3 s4 s5 . . .

si = f(si−1, yi−1, hn)
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Sequence-to-sequence learning Sutskever, Vinyals & Le (2014)
Sequence to Sequence Learning with Neural Networks

Produces a fixed length representation of input
· “sentence embedding” or “thought vector”
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Sequence-to-sequence learning Sutskever, Vinyals & Le (2014)
Sequence to Sequence Learning with Neural Networks

Produces a fixed length representation of input
· “sentence embedding” or “thought vector”
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Sequence-to-sequence learning Sutskever, Vinyals & Le (2014)
Sequence to Sequence Learning with Neural Networks

LSTM units do not solve vanishing gradients
− Poor performance on long sentences
− Need to reverse the input
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Attention-based translation Bahdanau et al (2015)
Neural Machine Translation by Jointly Learning to Align and Translate

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

y1 y2 y3 y4

s1 s2 s3 s4
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Attention-based translation Bahdanau et al (2015)
Neural Machine Translation by Jointly Learning to Align and Translate

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

y1 y2 y3 y4

s1 s2 s3 s4

feedforward

e4,1 e4,2 e4,3 e4,4 e4,n

eij = a(si−1, hj)
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Attention-based translation Bahdanau et al (2015)
Neural Machine Translation by Jointly Learning to Align and Translate

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

y1 y2 y3 y4

s1 s2 s3 s4

α4,1 α4,2 α4,3 α4,4 α4,n

softmax

αij =
exp(eij)∑
k exp(eik)

eij = a(si−1, hj)
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Attention-based translation Bahdanau et al (2015)
Neural Machine Translation by Jointly Learning to Align and Translate

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

y1 y2 y3 y4

s1 s2 s3 s4

α4,1 α4,2 α4,3 α4,4 α4,n

weighted
average

c5

ci =
∑
j

αijhj

αij =
exp(eij)∑
k exp(eik)

eij = a(si−1, hj)
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Attention-based translation Bahdanau et al (2015)
Neural Machine Translation by Jointly Learning to Align and Translate

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

y1 y2 y3 y4

s1 s2 s3 s4

α4,1 α4,2 α4,3 α4,4 α4,n

c5

s5

si = f(si−1, yi−1, ci)

ci =
∑
j

αijhj

αij =
exp(eij)∑
k exp(eik)

eij = a(si−1, hj)
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Attention-based translation Bahdanau et al (2015)
Neural Machine Translation by Jointly Learning to Align and Translate

· Bidirectional encoder, GRU activations
· Softmax for yi depends on yi−1 and an additional hidden layer

+ Backprop directly to attended regions, avoiding vanishing gradients
+ Can visualize attention weights αij to interpret prediction
− Inference is O(mn) instead of O(m) for seq-to-seq
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Attention-based translation Bahdanau et al (2015)
Neural Machine Translation by Jointly Learning to Align and Translate

Improved results on long sentences
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Attention-based translation Bahdanau et al (2015)
Neural Machine Translation by Jointly Learning to Align and Translate

Sensible induced alignments
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Attention-based translation Bahdanau et al (2015)
Neural Machine Translation by Jointly Learning to Align and Translate

Sensible induced alignments
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Natural language inference

Given a premise, e.g.,
The purchase of Houston-based LexCorp by BMI for $2Bn prompted
widespread sell-offs by traders as they sought to minimize exposure.
LexCorp had been an employee-owned concern since 2008.

and a hypothesis, e.g.,
BMI acquired an American company. (1)

predict whether the premise
◦ entails the hypothesis
◦ contradicts the hypothesis
◦ or remains neutral
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Natural language inference

Given a premise, e.g.,
The purchase of Houston-based LexCorp by BMI for $2Bn prompted
widespread sell-offs by traders as they sought to minimize exposure.
LexCorp had been an employee-owned concern since 2008.

and a hypothesis, e.g.,
BMI bought employee-owned LexCorp for $3.4Bn. (2)

predict whether the premise
◦ entails the hypothesis
◦ contradicts the hypothesis
◦ or remains neutral
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Natural language inference

Given a premise, e.g.,
The purchase of Houston-based LexCorp by BMI for $2Bn prompted
widespread sell-offs by traders as they sought to minimize exposure.
LexCorp had been an employee-owned concern since 2008.

and a hypothesis, e.g.,
BMI is an employee-owned concern. (3)

predict whether the premise
◦ entails the hypothesis
◦ contradicts the hypothesis
◦ or remains neutral
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Natural language inference Rocktäschel et al (2016)
Reasoning about Entailment with Neural Attention

Attention conditioned on hT
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Natural language inference Rocktäschel et al (2016)
Reasoning about Entailment with Neural Attention

Attention conditioned on h1, . . . , hT : Synonymy, importance
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Natural language inference Rocktäschel et al (2016)
Reasoning about Entailment with Neural Attention

Attention conditioned on h1, . . . , hT : Relatedness
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Natural language inference Rocktäschel et al (2016)
Reasoning about Entailment with Neural Attention

Attention conditioned on h1, . . . , hT : Many:one
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Self-attention Cheng et al (2016)
Long Short-Term Memory-Networks for Machine Reading
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Attention over images Xu et al (2015)
Show, Attend & Tell: Neural Image Caption Generation with Visual Attention
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Attention over videos Yao et al (2015)
Describing Videos by Exploiting Temporal Structure
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Attention variants

c = Attention(query q, keys k1 . . . kn)

q

k1 k2 k3 . . . kn

c

αi = softmax(score(q, ki))

c =
∑
i

αi, ki



22

Attention variants

c = Attention(query q, keys k1 . . . kn, values v1 . . . vn)
e.g., memory networks (Weston et al, 2015; Sukhbataar et al, 2015)

q

k1 k2 k3 . . . kn

c

v1 v2 v3 . . . vn

αi = softmax(score(q, ki))

c =
∑
i

αi, vi
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Attention variants Weston et al (2015)
Memory Networks

xi I G O R

Memory

yi

Input Generalization Output Response

f(xi) f(xi) g(f(xi),mi)

update fetch mi

MemN2N (Sukhbataar et al, 2015)
+ Soft attention over memories
+ Multiple memory lookups (hops)
+ End-to-end training
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Attention scoring functions

◦ Additive (Bahdanau et al, 2015)

score(q, k) = u>tanh(W [q; k])

◦ Multiplicative (Luong et al, 2015)

score(q, k) = q>Wk

◦ Scaled dot-product (Vaswani et al, 2017)

score(q, k) =
q>k√
dk
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Attention variants

◦ Stochastic hard attention (Xu et al, 2015)

◦ Local attention (Luong et al, 2015)

◦ Monotonic attention (Yu et al, 2016; Raffel et al, 2017)

◦ Self attention (Cheng et al, 2016; Vaswani et al, 2017)

◦ Convolutional attention (Allamanis et al, 2016)

◦ Structured attention (Kim et al, 2017)

◦ Multi-headed attention (Vaswani et al, 2017)
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Transformer Vaswani et al (2017)
Attention is All You Need

RNN encoder

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn
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Transformer Vaswani et al (2017)
Attention is All You Need

RNN encoder with attention

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

sj
cj
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Transformer Vaswani et al (2017)
Attention is All You Need

Deep encoder with self-attention

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

h′1 h′2 h′3 h′4 . . . h′n
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Transformer Vaswani et al (2017)
Attention is All You Need

Deep encoder with multi-head self-attention

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

h′1 h′2 h′3 h′4 . . . h′n
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Transformer Vaswani et al (2017)
Attention is All You Need
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Transformer Vaswani et al (2017)
Attention is All You Need

· Self-attention at every layer instead of recurrence
− Quadratic increase in computation for each hidden state
+ Inference can be parallelized

· No sensitivity to input position
− Positional embeddings required
+ Can apply to sets

· Deep architecture (6 layers) with multi-head attention
+ Higher layers appear to learn linguistic structure

· Scaled dot-product attention with masking
+ Avoids bias in simple dot-product attention
+ Fewer parameters needed for rich model

· Improved runtime and performance on translation, parsing, etc
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Transformer Vaswani et al (2017)
Attention is All You Need
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Transformer Vaswani et al (2017)
Attention is All You Need
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Transformer Vaswani et al (2017)
Attention is All You Need
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Transformer Vaswani et al (2017)
Attention is All You Need
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Transformer Vaswani et al (2017)
Attention is All You Need
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Large vocabularies

Sequence-to-sequence models can typically scale to 30K-50K words

But real-world applications need at least 500K-1M words
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Large vocabularies

Alternative 1: Hierarchical softmax

· Predict path in binary tree representation of output layer
· Reduces to log2(V ) binary decisions

p(wt = “dog”| · · · ) = (1− σ(U0ht))× σ(U1ht)× σ(U4ht)

0

1 2

3 4 5 6

cow duck cat dog she he and the
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Large vocabularies Jean et al (2015)
On Using Very Large Target Vocabulary for Neural Machine Translation

Alternative 2: Importance sampling

· Expensive to compute the softmax normalization term over V

p(yi = wj |y<i, x) =
exp

(
W>j f(si, yi−1, ci)

)∑|V |
k=1 exp

(
W>k f(si, yi−1, ci)

)
· Use a small subset of the target vocabulary for each update

· Approximate expectation over gradient of loss with fewer samples

· Partition the training corpus and maintain local vocabularies in each
partition to use GPUs efficiently
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Large vocabularies Sennrich et al (2016)
Neural Machine Translation of Rare Words with Subword Units

Alternative 3: Subword units

· Reduce vocabulary by replacing infrequent words with sub-words

Jet makers feud over seat width with big orders at stake

⇓

_J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

· Code for byte-pair encoding (BPE):
https://github.com/rsennrich/subword-nmt

https://github.com/rsennrich/subword-nmt
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Copying Gu et al (2016)
Incorporating Copying Mechanism in Sequence-to-Sequence Learning

In monolingual tasks, copy rare words directly from the input

· Generation via standard attention-based decoder

ψg(yi = wj) =W>j f(si, yi−1, ci) wj ∈ V

· Copying via a non-linear projection of input hidden states

ψc(yi = xj) = tanh(h>j U)f(si, yi−1, ci) xj ∈ X

· Both modes compete via the softmax

p(yi = wj |y<i, x) =
1

Z

exp (ψg(wj)) +
∑

k:xk=wj

exp (ψc(xk))
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Copying Gu et al (2016)
Incorporating Copying Mechanism in Sequence-to-Sequence Learning

Decoding probability p(yt| · · · )
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Copying Gu et al (2016)
Incorporating Copying Mechanism in Sequence-to-Sequence Learning
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Copying See et al (2017)
Get to the Point: Summarization with Pointer Generator Networks

Attention for common words
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Copying See et al (2017)
Get to the Point: Summarization with Pointer Generator Networks

Copying from input for rarer words
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Autoencoders

Given input x, learn an encoding z that can be decoded to
reconstruct x

For sequence input x1, . . . , xn, can use standard MT models
· Is attention viable?

+ Useful for pre-training text classifiers (Dai et al, 2015)
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Denoising autoencoders Hill et al (2016)
Learning Distributed Representations of Sentences from Unlabeled Data

Given noisy input x̃, learn an encoding z that can be decoded to
reconstruct x

Noise: drop words or swap two words with some probability

+ Helpful as features for a linear classifier
+ Can learn sentence representations without sentence order



39

Variational autoencoders (VAEs) Kingma & Welling (2014)
Auto-encoding Variational Bayes

Autoencoders often don’t generalize well to new data, noisy
representations

Approximate the posterior p(z|x) with variational inference
· Encoder: induce q(z|x) with parameters θ
· Decoder: sample z and reconstruct x with parameters φ
· Loss:

`i = −Ez∼qθ(z|xi) log pφ(xi|z) + KL (qθ(z|xi)||p(z))

Estimate gradients using reparameterization trick for Gaussians

z ∼ N (µ, σ2) = µ+ σ × [z′ ∼ N (0, 1)]
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Variational autoencoders (VAEs) Bowman et al (2016)
Generating Sentences from a Continuous Space

+ Better at word imputation than RNNs
+ Can interpolate smoothly between representations in the latent space


